concat_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
1
123malin 已提交
16

17
#include <paddle/fluid/platform/complex.h>
P
phlrain 已提交
18
#include <memory>
S
Siddharth Goyal 已提交
19
#include <string>
20 21
#include <vector>

P
phlrain 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

26 27
namespace paddle {
namespace operators {
28
using Tensor = framework::Tensor;
29 30 31 32 33

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext *ctx) const override {
35 36
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "Concat");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Concat");
37

38
    auto inputs_dims = ctx->GetInputsDim("X");
39

40
    const size_t inputs_num = inputs_dims.size();
41 42 43 44 45
    PADDLE_ENFORCE_GT(
        inputs_num, static_cast<size_t>(0),
        platform::errors::InvalidArgument(
            "The number of input tensors in concat op should > 0. But "
            "received inputs' length is 0."));
46
    if (inputs_num == 1) {
47 48
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
49

50 51 52 53 54 55 56 57 58 59 60 61 62
    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      size_t axis =
          ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                      static_cast<int64_t>(inputs_dims[0].size()));
      framework::DDim out_dims =
          ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis);
      if (out_dims[axis] < 0) {
        out_dims[axis] = -1;
63
      }
64 65
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
66 67
    }
  }
P
phlrain 已提交
68 69 70 71

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
72
    auto inputs = ctx.MultiInput<Tensor>("X");
73 74
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
75 76 77
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
78 79 80 81 82
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
1
123malin 已提交
83 84
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Concat OP are Empty!"));
85
    }
P
phlrain 已提交
86
#ifdef PADDLE_WITH_MKLDNN
87
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
phlrain 已提交
88 89 90 91 92 93 94
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
95 96 97 98 99 100 101 102 103 104

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
105 106 107 108
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
109
  void Make() override {
110 111
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
112 113 114
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
Z
zmx 已提交
115 116
        .SetDefault(false)
        .AsExtra();
117
    AddAttr<int>("axis",
118 119 120 121
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
122
        .SetDefault(0);
123 124 125 126 127 128
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
129 130 131 132
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
Z
zmx 已提交
133 134
        .SetDefault(false)
        .AsExtra();
135 136 137 138
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
zmx 已提交
139 140
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
141 142 143 144 145 146 147 148 149 150 151 152 153
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
154 155 156
  }
};

157 158
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
159
  using framework::OperatorWithKernel::OperatorWithKernel;
160

161
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
162 163 164
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
165 166

    ctx->ShareAllLoD(in_x, out_x_g_n);
167
  }
P
phlrain 已提交
168 169 170 171

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    // extra checking if attr "use_mkldnn" exist is needed because
    // test_reverse_op is calling concat_grad kernel without setting
    // "use_mkldnn" to any value
    if (ctx.HasAttr("use_mkldnn") &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
phlrain 已提交
187
  }
188 189 190 191 192 193 194 195 196 197

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
198 199
};

200
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInferer, "X");
P
phlrain 已提交
201

H
hong 已提交
202 203
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
204
 public:
H
hong 已提交
205
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
206 207

 protected:
208
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
209
    op->SetType("concat_grad");
H
hong 已提交
210
    op->SetInput("X", this->Input("X"));
H
hong 已提交
211 212 213
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
214 215 216
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
217
  }
218 219
};

C
ceci3 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233
template <typename T>
class ConcatDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("concat");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

234 235 236 237
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
238
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
239 240
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>);
P
phlrain 已提交
241
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
C
ceci3 已提交
242 243
                  ops::ConcatDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatDoubleGradOpMaker<paddle::imperative::OpBase>,
244
                  ops::ConcatOpGradNoNeedBufferVarInferer);
C
chengduoZH 已提交
245
REGISTER_OP_CPU_KERNEL(
246 247
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
248
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, bool>,
249
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
250 251
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::float16>,
L
liuyuhui 已提交
252
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>,
253 254 255 256 257
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::complex<float>>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::complex<double>>);
C
chengduoZH 已提交
258 259
REGISTER_OP_CPU_KERNEL(
    concat_grad,
260 261
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
262
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, bool>,
263
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
264 265
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>,
L
liuyuhui 已提交
266
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>,
267 268 269 270 271
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::complex<float>>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::complex<double>>);