metric.py 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14 15 16 17
"""Fleet Metrics"""

import math
import numpy as np
18 19
from paddle.static import Variable
import paddle
X
xujiaqi01 已提交
20

21 22
__all__ = []

X
xujiaqi01 已提交
23

T
tangwei12 已提交
24
def sum(input, scope=None, util=None):
X
xujiaqi01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    """
    distributed sum in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): sum array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_add(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)
44

X
xujiaqi01 已提交
45 46
          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
47
          print("sum array: ", paddle.distributed.fleet.sum(res))
X
xujiaqi01 已提交
48 49
    """
    if scope is None:
50
        scope = paddle.static.global_scope()
T
tangwei12 已提交
51
    if util is None:
52
        util = paddle.distributed.fleet.util
X
xujiaqi01 已提交
53 54 55 56 57 58
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
59
    output = util.all_reduce(input, "sum")
X
xujiaqi01 已提交
60 61 62 63
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
64
def max(input, scope=None, util=None):
X
xujiaqi01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    """
    distributed max in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): max array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_max(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
87
          print("max array: ", paddle.distributed.fleet.max(res))
X
xujiaqi01 已提交
88 89
    """
    if scope is None:
90
        scope = paddle.static.global_scope()
T
tangwei12 已提交
91
    if util is None:
92
        util = paddle.distributed.fleet.util
X
xujiaqi01 已提交
93 94 95 96 97 98
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
99
    output = util.all_reduce(input, "max")
X
xujiaqi01 已提交
100 101 102 103
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
104
def min(input, scope=None, util=None):
X
xujiaqi01 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    """
    distributed min in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): min array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_min(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
127
          print("min array: ", paddle.distributed.fleet.min(res))
X
xujiaqi01 已提交
128 129
    """
    if scope is None:
130
        scope = paddle.static.global_scope()
T
tangwei12 已提交
131
    if util is None:
132
        util = paddle.distributed.fleet.util
X
xujiaqi01 已提交
133 134 135 136 137 138
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
139
    output = util.all_reduce(input, "min")
X
xujiaqi01 已提交
140 141 142 143
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
144
def auc(stat_pos, stat_neg, scope=None, util=None):
X
xujiaqi01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    """
    distributed auc in fleet

    Args:
        stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc
        stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc
        scope(Scope): specific scope

    Returns:
        auc_value(float): auc value

    Example:
        .. code-block:: python

          # in model.py
          similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0))
          binary_predict = fluid.layers.concat(
              input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1)
          self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] =
              fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096)

          # in train.py, after train or infer
          pos = np.array(scope.find_var(stat_pos.name).get_tensor())
          neg = np.array(scope.find_var(stat_neg.name).get_tensor())
169
          print("auc: ", paddle.distributed.fleet.auc(pos, neg))
X
xujiaqi01 已提交
170 171
    """
    if scope is None:
172
        scope = paddle.static.global_scope()
T
tangwei12 已提交
173
    if util is None:
174
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
175

X
xujiaqi01 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189
    if isinstance(stat_pos, Variable):
        stat_pos = np.array(scope.find_var(stat_pos.name).get_tensor())
    elif isinstance(stat_pos, str):
        stat_pos = np.array(scope.find_var(stat_pos).get_tensor())
    if isinstance(stat_neg, Variable):
        stat_neg = np.array(scope.find_var(stat_neg.name).get_tensor())
    elif isinstance(stat_neg, str):
        stat_neg = np.array(scope.find_var(stat_neg).get_tensor())
    # auc pos bucket shape
    old_pos_shape = np.array(stat_pos.shape)
    # reshape to one dim
    stat_pos = stat_pos.reshape(-1)
    global_pos = np.copy(stat_pos) * 0
    # mpi allreduce
T
tangwei12 已提交
190
    global_pos = util.all_reduce(stat_pos, "sum")
X
xujiaqi01 已提交
191 192 193 194 195 196
    global_pos = global_pos.reshape(old_pos_shape)

    # auc neg bucket
    old_neg_shape = np.array(stat_neg.shape)
    stat_neg = stat_neg.reshape(-1)
    global_neg = np.copy(stat_neg) * 0
T
tangwei12 已提交
197
    global_neg = util.all_reduce(stat_neg, "sum")
X
xujiaqi01 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    global_neg = global_neg.reshape(old_neg_shape)

    # calculate auc
    num_bucket = len(global_pos[0])
    area = 0.0
    pos = 0.0
    neg = 0.0
    new_pos = 0.0
    new_neg = 0.0
    total_ins_num = 0
    for i in range(num_bucket):
        index = num_bucket - 1 - i
        new_pos = pos + global_pos[0][index]
        total_ins_num += global_pos[0][index]
        new_neg = neg + global_neg[0][index]
        total_ins_num += global_neg[0][index]
        area += (new_neg - neg) * (pos + new_pos) / 2
        pos = new_pos
        neg = new_neg

    auc_value = None
    if pos * neg == 0 or total_ins_num == 0:
        auc_value = 0.5
    else:
        auc_value = area / (pos * neg)

    return auc_value


T
tangwei12 已提交
227
def mae(abserr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
228 229 230 231 232
    """
    distributed mae in fleet

    Args:
        abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle
233
        total_ins_num(numpy.array|Variable|string): total variable
X
xujiaqi01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
        scope(Scope): specific scope

    Returns:
        mae(float): mae value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(abserr.name).get_tensor())
247
          print("mae: ", paddle.distributed.fleet.mae(res, total_ins_num))
X
xujiaqi01 已提交
248 249
    """
    if scope is None:
250
        scope = paddle.static.global_scope()
T
tangwei12 已提交
251
    if util is None:
252
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
253

X
xujiaqi01 已提交
254 255 256 257
    if isinstance(abserr, Variable):
        abserr = np.array(scope.find_var(abserr.name).get_tensor())
    elif isinstance(abserr, str):
        abserr = np.array(scope.find_var(abserr).get_tensor())
258 259 260 261 262
    if isinstance(total_ins_num, Variable):
        total_ins_num = np.array(
            scope.find_var(total_ins_num.name).get_tensor())
    elif isinstance(total_ins_num, str):
        total_ins_num = np.array(scope.find_var(total_ins_num).get_tensor())
T
tangwei12 已提交
263

X
xujiaqi01 已提交
264 265 266
    old_metric_shape = np.array(abserr.shape)
    abserr = abserr.reshape(-1)
    global_metric = np.copy(abserr) * 0
T
tangwei12 已提交
267 268

    global_metric = util.all_reduce(abserr, "sum")
X
xujiaqi01 已提交
269
    global_metric = global_metric.reshape(old_metric_shape)
270
    global_total_num = util.all_reduce(total_ins_num, "sum")
T
tangwei12 已提交
271

272
    mae_value = float(global_metric[0]) / float(global_total_num[0])
X
xujiaqi01 已提交
273 274 275
    return mae_value


T
tangwei12 已提交
276
def rmse(sqrerr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
277 278 279 280 281
    """
    distributed rmse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
282
        total_ins_num(numpy.array|Variable|string): total variable
X
xujiaqi01 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295
        scope(Scope): specific scope

    Returns:
        rmse(float): rmse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(sqrerr.name).get_tensor())
296
          print("rmse: ", paddle.distributed.fleet.rmse(res, total_ins_num))
X
xujiaqi01 已提交
297 298
    """
    if scope is None:
299
        scope = paddle.static.global_scope()
T
tangwei12 已提交
300
    if util is None:
301
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
302

X
xujiaqi01 已提交
303 304 305 306
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
307 308 309 310 311
    if isinstance(total_ins_num, Variable):
        total_ins_num = np.array(
            scope.find_var(total_ins_num.name).get_tensor())
    elif isinstance(total_ins_num, str):
        total_ins_num = np.array(scope.find_var(total_ins_num).get_tensor())
X
xujiaqi01 已提交
312 313 314
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
T
tangwei12 已提交
315 316

    global_metric = util.all_reduce(sqrerr, "sum")
X
xujiaqi01 已提交
317
    global_metric = global_metric.reshape(old_metric_shape)
318 319 320
    global_total_num = util.all_reduce(total_ins_num, "sum")

    rmse_value = math.sqrt(float(global_metric[0]) / float(global_total_num[0]))
T
tangwei12 已提交
321

X
xujiaqi01 已提交
322 323 324
    return rmse_value


T
tangwei12 已提交
325
def mse(sqrerr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
326 327 328 329 330
    """
    distributed mse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
331
        total_ins_num(numpy.array|Variable|string): total variable
X
xujiaqi01 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
        scope(Scope): specific scope

    Returns:
        mse(float): mse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          metric = np.array(scope.find_var(sqrerr.name).get_tensor())
345
          print("mse: ", paddle.distributed.fleet.mse(metric, total_ins_num))
X
xujiaqi01 已提交
346 347
    """
    if scope is None:
348
        scope = paddle.static.global_scope()
T
tangwei12 已提交
349
    if util is None:
350
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
351

X
xujiaqi01 已提交
352 353 354 355
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
356 357 358 359 360
    if isinstance(total_ins_num, Variable):
        total_ins_num = np.array(
            scope.find_var(total_ins_num.name).get_tensor())
    elif isinstance(total_ins_num, str):
        total_ins_num = np.array(scope.find_var(total_ins_num).get_tensor())
X
xujiaqi01 已提交
361 362 363
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
T
tangwei12 已提交
364 365

    global_metric = util.all_reduce(sqrerr, "sum")
X
xujiaqi01 已提交
366
    global_metric = global_metric.reshape(old_metric_shape)
367
    global_total_num = util.all_reduce(total_ins_num, "sum")
T
tangwei12 已提交
368

369
    mse_value = float(global_metric[0]) / float(global_total_num[0])
X
xujiaqi01 已提交
370 371 372
    return mse_value


T
tangwei12 已提交
373
def acc(correct, total, scope=None, util=None):
X
xujiaqi01 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    """
    distributed accuracy in fleet

    Args:
        correct(numpy.array|Variable|string): correct Variable
        total(numpy.array|Variable): total Variable
        scope(Scope): specific scope

    Returns:
        acc(float): accuracy value

    Example:
        .. code-block:: python

          # in model.py
          correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total)

          global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp1 = fluid.layers.elementwise_min(correct, global_correct)
          fluid.layers.assign(tmp1, global_correct)

          global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp2 = fluid.layers.elementwise_min(total, global_total)
          fluid.layers.assign(tmp2, global_total)

          # in train.py, after train or infer
          correct_num = np.array(scope.find_var(correct.name).get_tensor())
          total_num = np.array(scope.find_var(total.name).get_tensor())
404
          print("accuracy: ", paddle.distributed.fleet.acc(correct_num, total_num))
X
xujiaqi01 已提交
405 406
    """
    if scope is None:
407
        scope = paddle.static.global_scope()
T
tangwei12 已提交
408
    if util is None:
409
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
410

X
xujiaqi01 已提交
411 412 413 414 415 416 417 418
    if isinstance(correct, Variable):
        correct = np.array(scope.find_var(correct.name).get_tensor())
    elif isinstance(correct, str):
        correct = np.array(scope.find_var(correct).get_tensor())
    if isinstance(total, Variable):
        total = np.array(scope.find_var(total.name).get_tensor())
    elif isinstance(total, str):
        total = np.array(scope.find_var(total).get_tensor())
T
tangwei12 已提交
419

X
xujiaqi01 已提交
420 421
    global_correct_num = np.copy(correct) * 0
    global_total_num = np.copy(total) * 0
T
tangwei12 已提交
422 423 424 425

    global_correct_num = util.all_reduce(correct, "sum")
    global_total_num = util.all_reduce(total, "sum")

X
xujiaqi01 已提交
426
    return float(global_correct_num[0]) / float(global_total_num[0])