metric.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14 15 16 17 18 19
"""Fleet Metrics"""

import paddle.fluid as fluid
import math
import numpy as np
from paddle.fluid.framework import Variable
20
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
X
xujiaqi01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


def sum(input, scope=None):
    """
    distributed sum in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): sum array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_add(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)
          
          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
46
          print("sum array: ", paddle.distributed.fleet.sum(res))
X
xujiaqi01 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
    fleet._role_maker._all_reduce(input, output, mode="sum")
    output = output.reshape(old_shape)
    return output


def max(input, scope=None):
    """
    distributed max in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): max array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_max(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
85
          print("max array: ", paddle.distributed.fleet.max(res))
X
xujiaqi01 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
    fleet._role_maker._all_reduce(input, output, mode="max")
    output = output.reshape(old_shape)
    return output


def min(input, scope=None):
    """
    distributed min in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): min array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_min(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
124
          print("min array: ", paddle.distributed.fleet.min(res))
X
xujiaqi01 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
    fleet._role_maker._all_reduce(input, output, mode="min")
    output = output.reshape(old_shape)
    return output


def auc(stat_pos, stat_neg, scope=None):
    """
    distributed auc in fleet

    Args:
        stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc
        stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc
        scope(Scope): specific scope

    Returns:
        auc_value(float): auc value

    Example:
        .. code-block:: python

          # in model.py
          similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0))
          binary_predict = fluid.layers.concat(
              input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1)
          self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] =
              fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096)

          # in train.py, after train or infer
          pos = np.array(scope.find_var(stat_pos.name).get_tensor())
          neg = np.array(scope.find_var(stat_neg.name).get_tensor())
165
          print("auc: ", paddle.distributed.fleet.auc(pos, neg))
X
xujiaqi01 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(stat_pos, Variable):
        stat_pos = np.array(scope.find_var(stat_pos.name).get_tensor())
    elif isinstance(stat_pos, str):
        stat_pos = np.array(scope.find_var(stat_pos).get_tensor())
    if isinstance(stat_neg, Variable):
        stat_neg = np.array(scope.find_var(stat_neg.name).get_tensor())
    elif isinstance(stat_neg, str):
        stat_neg = np.array(scope.find_var(stat_neg).get_tensor())
    # auc pos bucket shape
    old_pos_shape = np.array(stat_pos.shape)
    # reshape to one dim
    stat_pos = stat_pos.reshape(-1)
    global_pos = np.copy(stat_pos) * 0
    # mpi allreduce
    fleet._role_maker._all_reduce(stat_pos, global_pos)
    # reshape to its original shape
    global_pos = global_pos.reshape(old_pos_shape)

    # auc neg bucket
    old_neg_shape = np.array(stat_neg.shape)
    stat_neg = stat_neg.reshape(-1)
    global_neg = np.copy(stat_neg) * 0
    fleet._role_maker._all_reduce(stat_neg, global_neg)
    global_neg = global_neg.reshape(old_neg_shape)

    # calculate auc
    num_bucket = len(global_pos[0])
    area = 0.0
    pos = 0.0
    neg = 0.0
    new_pos = 0.0
    new_neg = 0.0
    total_ins_num = 0
    for i in range(num_bucket):
        index = num_bucket - 1 - i
        new_pos = pos + global_pos[0][index]
        total_ins_num += global_pos[0][index]
        new_neg = neg + global_neg[0][index]
        total_ins_num += global_neg[0][index]
        area += (new_neg - neg) * (pos + new_pos) / 2
        pos = new_pos
        neg = new_neg

    auc_value = None
    if pos * neg == 0 or total_ins_num == 0:
        auc_value = 0.5
    else:
        auc_value = area / (pos * neg)

    fleet._role_maker._barrier_worker()
    return auc_value


def mae(abserr, total_ins_num, scope=None):
    """
    distributed mae in fleet

    Args:
        abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle
        total_ins_num(int|float): total train/infer instance count
        scope(Scope): specific scope

    Returns:
        mae(float): mae value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(abserr.name).get_tensor())
243
          print("mae: ", paddle.distributed.fleet.mae(res, total_ins_num))
X
xujiaqi01 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(abserr, Variable):
        abserr = np.array(scope.find_var(abserr.name).get_tensor())
    elif isinstance(abserr, str):
        abserr = np.array(scope.find_var(abserr).get_tensor())
    old_metric_shape = np.array(abserr.shape)
    abserr = abserr.reshape(-1)
    global_metric = np.copy(abserr) * 0
    fleet._role_maker._all_reduce(abserr, global_metric)
    global_metric = global_metric.reshape(old_metric_shape)
    mae_value = global_metric[0] / total_ins_num
    return mae_value


def rmse(sqrerr, total_ins_num, scope=None):
    """
    distributed rmse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
        total_ins_num(int|float): total train/infer instance count
        scope(Scope): specific scope

    Returns:
        rmse(float): rmse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(sqrerr.name).get_tensor())
281
          print("rmse: ", paddle.distributed.fleet.rmse(res, total_ins_num))
X
xujiaqi01 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
    fleet._role_maker._all_reduce(sqrerr, global_metric)
    global_metric = global_metric.reshape(old_metric_shape)
    rmse_value = math.sqrt(global_metric[0] / total_ins_num)
    return rmse_value


def mse(sqrerr, total_ins_num, scope=None):
    """
    distributed mse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
        total_ins_num(int|float): total train/infer instance count
        scope(Scope): specific scope

    Returns:
        mse(float): mse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          metric = np.array(scope.find_var(sqrerr.name).get_tensor())
319
          print("mse: ", paddle.distributed.fleet.mse(metric, total_ins_num))
X
xujiaqi01 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
    fleet._role_maker._all_reduce(sqrerr, global_metric)
    global_metric = global_metric.reshape(old_metric_shape)
    mse_value = global_metric[0] / total_ins_num
    return mse_value


def acc(correct, total, scope=None):
    """
    distributed accuracy in fleet

    Args:
        correct(numpy.array|Variable|string): correct Variable
        total(numpy.array|Variable): total Variable
        scope(Scope): specific scope

    Returns:
        acc(float): accuracy value

    Example:
        .. code-block:: python

          # in model.py
          correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total)

          global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp1 = fluid.layers.elementwise_min(correct, global_correct)
          fluid.layers.assign(tmp1, global_correct)

          global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp2 = fluid.layers.elementwise_min(total, global_total)
          fluid.layers.assign(tmp2, global_total)

          # in train.py, after train or infer
          correct_num = np.array(scope.find_var(correct.name).get_tensor())
          total_num = np.array(scope.find_var(total.name).get_tensor())
368
          print("accuracy: ", paddle.distributed.fleet.acc(correct_num, total_num))
X
xujiaqi01 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    """
    fleet._role_maker._barrier_worker()
    if scope is None:
        scope = fluid.global_scope()
    if isinstance(correct, Variable):
        correct = np.array(scope.find_var(correct.name).get_tensor())
    elif isinstance(correct, str):
        correct = np.array(scope.find_var(correct).get_tensor())
    if isinstance(total, Variable):
        total = np.array(scope.find_var(total.name).get_tensor())
    elif isinstance(total, str):
        total = np.array(scope.find_var(total).get_tensor())
    global_correct_num = np.copy(correct) * 0
    global_total_num = np.copy(total) * 0
    fleet._role_maker._all_reduce(correct, global_correct_num)
    fleet._role_maker._all_reduce(total, global_total_num)
    return float(global_correct_num[0]) / float(global_total_num[0])