未验证 提交 4152d399 编写于 作者: X xujiaqi01 提交者: GitHub

add fleet metric (#25463)

* add fleet distributed metrics
* test=develop
上级 98899b73
......@@ -11,3 +11,375 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fleet Metrics"""
import paddle.fluid as fluid
import math
import numpy as np
from paddle.fluid.framework import Variable
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet as fleet
def sum(input, scope=None):
"""
distributed sum in fleet
Args:
input(numpy.array|Variable|string): output of a layer
scope(Scope): specific scope
Returns:
global_metric(numpy.array): sum array
Example:
.. code-block:: python
# in model.py
input = fluid.layers.cast(some_input, dtype='float32')
cnt = fluid.layers.reduce_sum(input)
global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp = fluid.layers.elementwise_add(cnt, global_cnt)
fluid.layers.assign(tmp, global_cnt)
# in train.py, after train or infer
res = np.array(scope.find_var(global_cnt.name).get_tensor())
print("sum array: ", paddle.fleet.sum(res))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(input, Variable):
input = np.array(scope.find_var(input.name).get_tensor())
elif isinstance(input, str):
input = np.array(scope.find_var(input).get_tensor())
old_shape = np.array(input.shape)
output = np.copy(input) * 0
fleet._role_maker._all_reduce(input, output, mode="sum")
output = output.reshape(old_shape)
return output
def max(input, scope=None):
"""
distributed max in fleet
Args:
input(numpy.array|Variable|string): output of a layer
scope(Scope): specific scope
Returns:
global_metric(numpy.array): max array
Example:
.. code-block:: python
# in model.py
input = fluid.layers.cast(some_input, dtype='float32')
cnt = fluid.layers.reduce_sum(input)
global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp = fluid.layers.elementwise_max(cnt, global_cnt)
fluid.layers.assign(tmp, global_cnt)
# in train.py, after train or infer
res = np.array(scope.find_var(global_cnt.name).get_tensor())
print("max array: ", paddle.fleet.max(res))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(input, Variable):
input = np.array(scope.find_var(input.name).get_tensor())
elif isinstance(input, str):
input = np.array(scope.find_var(input).get_tensor())
old_shape = np.array(input.shape)
output = np.copy(input) * 0
fleet._role_maker._all_reduce(input, output, mode="max")
output = output.reshape(old_shape)
return output
def min(input, scope=None):
"""
distributed min in fleet
Args:
input(numpy.array|Variable|string): output of a layer
scope(Scope): specific scope
Returns:
global_metric(numpy.array): min array
Example:
.. code-block:: python
# in model.py
input = fluid.layers.cast(some_input, dtype='float32')
cnt = fluid.layers.reduce_sum(input)
global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp = fluid.layers.elementwise_min(cnt, global_cnt)
fluid.layers.assign(tmp, global_cnt)
# in train.py, after train or infer
res = np.array(scope.find_var(global_cnt.name).get_tensor())
print("min array: ", paddle.fleet.min(res))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(input, Variable):
input = np.array(scope.find_var(input.name).get_tensor())
elif isinstance(input, str):
input = np.array(scope.find_var(input).get_tensor())
old_shape = np.array(input.shape)
output = np.copy(input) * 0
fleet._role_maker._all_reduce(input, output, mode="min")
output = output.reshape(old_shape)
return output
def auc(stat_pos, stat_neg, scope=None):
"""
distributed auc in fleet
Args:
stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc
stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc
scope(Scope): specific scope
Returns:
auc_value(float): auc value
Example:
.. code-block:: python
# in model.py
similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0))
binary_predict = fluid.layers.concat(
input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1)
self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] =
fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096)
# in train.py, after train or infer
pos = np.array(scope.find_var(stat_pos.name).get_tensor())
neg = np.array(scope.find_var(stat_neg.name).get_tensor())
print("auc: ", paddle.fleet.auc(pos, neg))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(stat_pos, Variable):
stat_pos = np.array(scope.find_var(stat_pos.name).get_tensor())
elif isinstance(stat_pos, str):
stat_pos = np.array(scope.find_var(stat_pos).get_tensor())
if isinstance(stat_neg, Variable):
stat_neg = np.array(scope.find_var(stat_neg.name).get_tensor())
elif isinstance(stat_neg, str):
stat_neg = np.array(scope.find_var(stat_neg).get_tensor())
# auc pos bucket shape
old_pos_shape = np.array(stat_pos.shape)
# reshape to one dim
stat_pos = stat_pos.reshape(-1)
global_pos = np.copy(stat_pos) * 0
# mpi allreduce
fleet._role_maker._all_reduce(stat_pos, global_pos)
# reshape to its original shape
global_pos = global_pos.reshape(old_pos_shape)
# auc neg bucket
old_neg_shape = np.array(stat_neg.shape)
stat_neg = stat_neg.reshape(-1)
global_neg = np.copy(stat_neg) * 0
fleet._role_maker._all_reduce(stat_neg, global_neg)
global_neg = global_neg.reshape(old_neg_shape)
# calculate auc
num_bucket = len(global_pos[0])
area = 0.0
pos = 0.0
neg = 0.0
new_pos = 0.0
new_neg = 0.0
total_ins_num = 0
for i in range(num_bucket):
index = num_bucket - 1 - i
new_pos = pos + global_pos[0][index]
total_ins_num += global_pos[0][index]
new_neg = neg + global_neg[0][index]
total_ins_num += global_neg[0][index]
area += (new_neg - neg) * (pos + new_pos) / 2
pos = new_pos
neg = new_neg
auc_value = None
if pos * neg == 0 or total_ins_num == 0:
auc_value = 0.5
else:
auc_value = area / (pos * neg)
fleet._role_maker._barrier_worker()
return auc_value
def mae(abserr, total_ins_num, scope=None):
"""
distributed mae in fleet
Args:
abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle
total_ins_num(int|float): total train/infer instance count
scope(Scope): specific scope
Returns:
mae(float): mae value
Example:
.. code-block:: python
# in model.py
sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))
# in train.py, after train or infer
res = np.array(scope.find_var(abserr.name).get_tensor())
print("mae: ", paddle.fleet.mae(res, total_ins_num))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(abserr, Variable):
abserr = np.array(scope.find_var(abserr.name).get_tensor())
elif isinstance(abserr, str):
abserr = np.array(scope.find_var(abserr).get_tensor())
old_metric_shape = np.array(abserr.shape)
abserr = abserr.reshape(-1)
global_metric = np.copy(abserr) * 0
fleet._role_maker._all_reduce(abserr, global_metric)
global_metric = global_metric.reshape(old_metric_shape)
mae_value = global_metric[0] / total_ins_num
return mae_value
def rmse(sqrerr, total_ins_num, scope=None):
"""
distributed rmse in fleet
Args:
sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
total_ins_num(int|float): total train/infer instance count
scope(Scope): specific scope
Returns:
rmse(float): rmse value
Example:
.. code-block:: python
# in model.py
sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))
# in train.py, after train or infer
res = np.array(scope.find_var(sqrerr.name).get_tensor())
print("rmse: ", paddle.fleet.rmse(res, total_ins_num))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(sqrerr, Variable):
sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
elif isinstance(sqrerr, str):
sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
old_metric_shape = np.array(sqrerr.shape)
sqrerr = sqrerr.reshape(-1)
global_metric = np.copy(sqrerr) * 0
fleet._role_maker._all_reduce(sqrerr, global_metric)
global_metric = global_metric.reshape(old_metric_shape)
rmse_value = math.sqrt(global_metric[0] / total_ins_num)
return rmse_value
def mse(sqrerr, total_ins_num, scope=None):
"""
distributed mse in fleet
Args:
sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
total_ins_num(int|float): total train/infer instance count
scope(Scope): specific scope
Returns:
mse(float): mse value
Example:
.. code-block:: python
# in model.py
sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))
# in train.py, after train or infer
metric = np.array(scope.find_var(sqrerr.name).get_tensor())
print("mse: ", paddle.fleet.mse(metric, total_ins_num))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(sqrerr, Variable):
sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
elif isinstance(sqrerr, str):
sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
old_metric_shape = np.array(sqrerr.shape)
sqrerr = sqrerr.reshape(-1)
global_metric = np.copy(sqrerr) * 0
fleet._role_maker._all_reduce(sqrerr, global_metric)
global_metric = global_metric.reshape(old_metric_shape)
mse_value = global_metric[0] / total_ins_num
return mse_value
def acc(correct, total, scope=None):
"""
distributed accuracy in fleet
Args:
correct(numpy.array|Variable|string): correct Variable
total(numpy.array|Variable): total Variable
scope(Scope): specific scope
Returns:
acc(float): accuracy value
Example:
.. code-block:: python
# in model.py
correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total)
global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp1 = fluid.layers.elementwise_min(correct, global_correct)
fluid.layers.assign(tmp1, global_correct)
global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp2 = fluid.layers.elementwise_min(total, global_total)
fluid.layers.assign(tmp2, global_total)
# in train.py, after train or infer
correct_num = np.array(scope.find_var(correct.name).get_tensor())
total_num = np.array(scope.find_var(total.name).get_tensor())
print("accuracy: ", paddle.fleet.acc(correct_num, total_num))
"""
fleet._role_maker._barrier_worker()
if scope is None:
scope = fluid.global_scope()
if isinstance(correct, Variable):
correct = np.array(scope.find_var(correct.name).get_tensor())
elif isinstance(correct, str):
correct = np.array(scope.find_var(correct).get_tensor())
if isinstance(total, Variable):
total = np.array(scope.find_var(total.name).get_tensor())
elif isinstance(total, str):
total = np.array(scope.find_var(total).get_tensor())
global_correct_num = np.copy(correct) * 0
global_total_num = np.copy(total) * 0
fleet._role_maker._all_reduce(correct, global_correct_num)
fleet._role_maker._all_reduce(total, global_total_num)
return float(global_correct_num[0]) / float(global_total_num[0])
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet metric."""
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
import os
import unittest
import paddle.fleet.metrics.metric as metric
from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet as fleet
class TestFleetMetric(unittest.TestCase):
"""Test cases for fleet metric."""
def setUp(self):
"""Set up, set envs."""
class FakeFleet:
"""Fake fleet only for test."""
def __init__(self):
"""Init."""
self.gloo = fluid.core.Gloo()
self.gloo.set_rank(0)
self.gloo.set_size(1)
self.gloo.set_prefix("123")
self.gloo.set_iface("lo")
self.gloo.set_hdfs_store("./tmp_test_metric", "", "")
self.gloo.init()
def _all_reduce(self, input, output, mode="sum"):
"""All reduce using gloo."""
input_list = [i for i in input]
ans = self.gloo.all_reduce(input_list, mode)
for i in range(len(ans)):
output[i] = 1
def _barrier_worker(self):
"""Fake barrier worker, do nothing."""
pass
self.fleet = FakeFleet()
fleet._role_maker = self.fleet
def test_metric_1(self):
"""Test cases for metrics."""
train = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train, startup):
t = fluid.layers.create_global_var(
shape=[1, 1],
value=1,
dtype='int64',
persistable=True,
force_cpu=True)
t1 = fluid.layers.create_global_var(
shape=[1, 1],
value=1,
dtype='int64',
persistable=True,
force_cpu=True)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.Scope()
with fluid.scope_guard(scope):
exe.run(startup)
metric.sum(t, scope)
metric.max(t, scope)
metric.min(t, scope)
metric.auc(t, t1, scope)
metric.mae(t1, 3, scope)
metric.rmse(t1, 3, scope)
metric.mse(t1, 3, scope)
metric.acc(t, t1, scope)
metric.sum(str(t.name), scope)
metric.max(str(t.name), scope)
metric.min(str(t.name), scope)
metric.auc(str(t1.name), str(t.name), scope)
metric.mae(str(t1.name), 3, scope)
metric.rmse(str(t1.name), 3, scope)
metric.mse(str(t1.name), 3, scope)
metric.acc(str(t.name), str(t1.name), scope)
arr = np.array([1, 2, 3, 4])
metric.sum(arr)
metric.max(arr)
metric.min(arr)
arr1 = np.array([[1, 2, 3, 4]])
arr2 = np.array([[1, 2, 3, 4]])
arr3 = np.array([1, 2, 3, 4])
metric.auc(arr1, arr2)
metric.mae(arr, 3)
metric.rmse(arr, 3)
metric.mse(arr, 3)
metric.acc(arr, arr3)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册