test_expand_v2_op.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20
from eager_op_test import OpTest
21 22

import paddle
23
import paddle.fluid as fluid
24
from paddle.fluid import Program, core, program_guard
25 26 27 28 29 30 31


# Situation 1: shape is a list(without tensor)
class TestExpandV2OpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
H
hong 已提交
32
        self.python_api = paddle.expand
33 34 35 36 37 38 39 40 41 42 43 44

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'shape': self.shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.shape = [100]
        self.expand_times = [1]

    def test_check_output(self):
45
        self.check_output()
46 47

    def test_check_grad(self):
48
        self.check_grad(['X'], 'Out')
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82


class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.shape = [2, 120]
        self.expand_times = [2, 1]


class TestExpandV2OpRank2(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [1, 140]
        self.shape = [12, 140]
        self.expand_times = [12, 1]


class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.shape = (2, 10, 5)
        self.expand_times = (1, 1, 1)


class TestExpandV2OpRank4(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.shape = (-1, -1, -1, -1)
        self.expand_times = (1, 1, 1, 1)


# Situation 2: shape is a list(with tensor)
class TestExpandV2OpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
83
        self.python_api = paddle.expand
84 85 86
        self.init_data()
        expand_shapes_tensor = []
        for index, ele in enumerate(self.expand_shape):
87 88 89
            expand_shapes_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'expand_shapes_tensor': expand_shapes_tensor,
        }
        self.attrs = {"shape": self.infer_expand_shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [1]
        self.expand_shape = [100]
        self.infer_expand_shape = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.expand_shape = [12, 14]
        self.infer_expand_shape = [12, -1]


# Situation 3: shape is a tensor
class TestExpandV2OpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
124
        self.python_api = paddle.expand
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'Shape': np.array(self.expand_shape).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [2, 1]
        self.expand_shape = [2, 100]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# Situation 4: input x is Integer
class TestExpandV2OpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
151
        self.python_api = paddle.expand
152
        self.inputs = {
153
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
154 155 156 157 158 159 160 161 162 163 164 165 166
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestExpandV2OpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
167
        self.python_api = paddle.expand
168 169 170 171 172 173 174 175 176 177 178 179 180
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestExpandV2OpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
181
        self.python_api = paddle.expand
182
        self.inputs = {
183
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
184 185 186 187 188 189 190 191 192 193 194 195
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestExpandV2Error(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
196 197 198
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
199 200
            shape = [2, 2]
            self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
G
GGBond8488 已提交
201
            x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8")
202
            self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
G
GGBond8488 已提交
203
            x3 = paddle.static.data(name='x3', shape=[-1, 4], dtype="bool")
L
lilong12 已提交
204
            x3.stop_gradient = False
205 206 207 208 209 210 211
            self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)


# Test python API
class TestExpandV2API(unittest.TestCase):
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
G
GGBond8488 已提交
212
        x = paddle.static.data(name='x', shape=[12, 14], dtype="float32")
213 214

        positive_2 = fluid.layers.fill_constant([1], "int32", 12)
G
GGBond8488 已提交
215
        expand_shape = paddle.static.data(
216 217 218 219
            name="expand_shape",
            shape=[2],
            dtype="int32",
        )
220 221 222 223 224 225 226 227

        out_1 = paddle.expand(x, shape=[12, 14])
        out_2 = paddle.expand(x, shape=[positive_2, 14])
        out_3 = paddle.expand(x, shape=expand_shape)

        g0 = fluid.backward.calc_gradient(out_2, x)

        exe = fluid.Executor(place=fluid.CPUPlace())
228 229 230 231 232 233 234 235
        res_1, res_2, res_3 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                "expand_shape": np.array([12, 14]).astype("int32"),
            },
            fetch_list=[out_1, out_2, out_3],
        )
236 237 238 239 240
        assert np.array_equal(res_1, np.tile(input, (1, 1)))
        assert np.array_equal(res_2, np.tile(input, (1, 1)))
        assert np.array_equal(res_3, np.tile(input, (1, 1)))


241 242 243 244 245 246
class TestExpandInferShape(unittest.TestCase):
    def test_shape_with_var(self):
        with program_guard(Program(), Program()):
            x = paddle.static.data(shape=[-1, 1, 3], name='x')
            fake_var = paddle.randn([2, 3])
            target_shape = [
247 248 249
                -1,
                paddle.shape(fake_var)[0],
                paddle.shape(fake_var)[1],
250 251 252 253 254
            ]
            out = paddle.expand(x, shape=target_shape)
            self.assertListEqual(list(out.shape), [-1, -1, -1])


255
# Test python Dygraph API
256 257 258 259 260 261 262 263
class TestExpandV2DygraphAPI(unittest.TestCase):
    def test_expand_times_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            paddle.seed(1)
            a = paddle.rand([2, 5])
            expand_1 = paddle.expand(a, shape=[2, 5])
            np_array = np.array([2, 5])
            expand_2 = paddle.expand(a, shape=np_array)
264
            np.testing.assert_array_equal(expand_1.numpy(), expand_2.numpy())
265 266


267 268 269 270 271 272 273 274 275 276
class TestExpandDoubleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
277
        data = paddle.static.data('data', [2, 3], dtype)
278 279 280 281
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

282 283 284 285 286 287
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandTripleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
308
        data = paddle.static.data('data', [2, 3], dtype)
309 310 311 312
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

313 314 315 316 317 318
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
319 320 321 322 323 324 325 326 327 328

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


329
if __name__ == "__main__":
H
hong 已提交
330
    paddle.enable_static()
331
    unittest.main()