test_expand_v2_op.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest
21 22

import paddle
23
import paddle.fluid as fluid
24
from paddle.fluid import Program, core, program_guard
25 26 27 28 29 30 31


# Situation 1: shape is a list(without tensor)
class TestExpandV2OpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
H
hong 已提交
32
        self.python_api = paddle.expand
33 34 35 36 37 38 39 40 41 42 43 44

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'shape': self.shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.shape = [100]
        self.expand_times = [1]

    def test_check_output(self):
H
hong 已提交
45
        self.check_output(check_eager=True)
46 47

    def test_check_grad(self):
H
hong 已提交
48
        self.check_grad(['X'], 'Out', check_eager=True)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85


class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.shape = [2, 120]
        self.expand_times = [2, 1]


class TestExpandV2OpRank2(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [1, 140]
        self.shape = [12, 140]
        self.expand_times = [12, 1]


class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.shape = (2, 10, 5)
        self.expand_times = (1, 1, 1)


class TestExpandV2OpRank4(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.shape = (-1, -1, -1, -1)
        self.expand_times = (1, 1, 1, 1)


# Situation 2: shape is a list(with tensor)
class TestExpandV2OpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
        expand_shapes_tensor = []
        for index, ele in enumerate(self.expand_shape):
86 87 88
            expand_shapes_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'expand_shapes_tensor': expand_shapes_tensor,
        }
        self.attrs = {"shape": self.infer_expand_shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [1]
        self.expand_shape = [100]
        self.infer_expand_shape = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.expand_shape = [12, 14]
        self.infer_expand_shape = [12, -1]


# Situation 3: shape is a tensor
class TestExpandV2OpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'Shape': np.array(self.expand_shape).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [2, 1]
        self.expand_shape = [2, 100]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# Situation 4: input x is Integer
class TestExpandV2OpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {
150
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestExpandV2OpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestExpandV2OpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {
178
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
179 180 181 182 183 184 185 186 187 188 189 190
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestExpandV2Error(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
191 192 193
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
194 195
            shape = [2, 2]
            self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
G
GGBond8488 已提交
196
            x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8")
197
            self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
G
GGBond8488 已提交
198
            x3 = paddle.static.data(name='x3', shape=[-1, 4], dtype="bool")
L
lilong12 已提交
199
            x3.stop_gradient = False
200 201 202 203 204 205 206
            self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)


# Test python API
class TestExpandV2API(unittest.TestCase):
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
G
GGBond8488 已提交
207
        x = paddle.static.data(name='x', shape=[12, 14], dtype="float32")
208 209

        positive_2 = fluid.layers.fill_constant([1], "int32", 12)
G
GGBond8488 已提交
210
        expand_shape = paddle.static.data(
211 212 213 214
            name="expand_shape",
            shape=[2],
            dtype="int32",
        )
215 216 217 218 219 220 221 222

        out_1 = paddle.expand(x, shape=[12, 14])
        out_2 = paddle.expand(x, shape=[positive_2, 14])
        out_3 = paddle.expand(x, shape=expand_shape)

        g0 = fluid.backward.calc_gradient(out_2, x)

        exe = fluid.Executor(place=fluid.CPUPlace())
223 224 225 226 227 228 229 230
        res_1, res_2, res_3 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                "expand_shape": np.array([12, 14]).astype("int32"),
            },
            fetch_list=[out_1, out_2, out_3],
        )
231 232 233 234 235
        assert np.array_equal(res_1, np.tile(input, (1, 1)))
        assert np.array_equal(res_2, np.tile(input, (1, 1)))
        assert np.array_equal(res_3, np.tile(input, (1, 1)))


236 237 238 239 240 241
class TestExpandInferShape(unittest.TestCase):
    def test_shape_with_var(self):
        with program_guard(Program(), Program()):
            x = paddle.static.data(shape=[-1, 1, 3], name='x')
            fake_var = paddle.randn([2, 3])
            target_shape = [
242 243 244
                -1,
                paddle.shape(fake_var)[0],
                paddle.shape(fake_var)[1],
245 246 247 248 249
            ]
            out = paddle.expand(x, shape=target_shape)
            self.assertListEqual(list(out.shape), [-1, -1, -1])


250
# Test python Dygraph API
251 252 253 254 255 256 257 258
class TestExpandV2DygraphAPI(unittest.TestCase):
    def test_expand_times_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            paddle.seed(1)
            a = paddle.rand([2, 5])
            expand_1 = paddle.expand(a, shape=[2, 5])
            np_array = np.array([2, 5])
            expand_2 = paddle.expand(a, shape=np_array)
259
            np.testing.assert_array_equal(expand_1.numpy(), expand_2.numpy())
260 261


262 263 264 265 266 267 268 269 270 271
class TestExpandDoubleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
272
        data = paddle.static.data('data', [2, 3], dtype)
273 274 275 276
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

277 278 279 280 281 282
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandTripleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
303
        data = paddle.static.data('data', [2, 3], dtype)
304 305 306 307
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

308 309 310 311 312 313
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
314 315 316 317 318 319 320 321 322 323

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


324
if __name__ == "__main__":
H
hong 已提交
325
    paddle.enable_static()
326
    unittest.main()