transpose_op.cc 15.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16

17
#include <memory>
18
#include <string>
19
#include <vector>
X
xzl 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
25 26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext *ctx) const override {
35 36
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
37 38
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
39
    size_t x_rank = x_dims.size();
X
xzl 已提交
40
    size_t axis_size = axis.size();
X
xzl 已提交
41

42 43
    PADDLE_ENFORCE_EQ(x_rank,
                      axis_size,
44 45 46 47 48
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
49 50
                          x_rank,
                          axis_size));
51 52 53

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
54 55
      PADDLE_ENFORCE_GE(axis[i],
                        0,
56 57 58
                        platform::errors::InvalidArgument(
                            "The axis should be greater than or equal to 0."
                            "But received %d of axis[%d]",
59 60
                            axis[i],
                            i));
61

62
      PADDLE_ENFORCE_EQ(
63 64
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          true,
65 66 67 68 69 70 71
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
72 73 74 75 76
              i,
              axis[i],
              axis_size,
              i,
              count[axis[i]]));
X
xzl 已提交
77
    }
X
xzl 已提交
78

X
xzl 已提交
79
    framework::DDim out_dims(x_dims);
J
Jacek Czaja 已提交
80 81 82
#ifdef PADDLE_WITH_MKLDNN
    // Here we need to match dims to paddle layout
    // as we are producing non-oneDNN result
83
    if (ctx->IsRunMKLDNNKernel() && (x_dims.size() >= 3) &&
J
Jacek Czaja 已提交
84 85
        (paddle::platform::MKLDNNDeviceContext::tls()
             .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC)) {
86
      auto dims = phi::vectorize<int>(x_dims);
J
Jacek Czaja 已提交
87 88 89 90 91 92
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      x_dims = x_dims.reshape(dims);
      VLOG(3)
          << "Rotating Shape in Transpose from: kMKLDNN to: kNHWC output_shape";
    }
#endif
93
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
94
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
95
    }
Q
Qiao Longfei 已提交
96
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
97
  }
98 99 100 101 102

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
103
    auto &data_format = ctx.Attr<std::string>("data_format");
104
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
105
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
106 107
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
108
        this->CanMKLDNNBeUsed(ctx, data_type)) {
109 110 111 112
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
113 114
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), layout_, library_);
115
  }
X
xzl 已提交
116 117 118 119
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
120
  void Make() override {
121
    AddInput(
X
xzl 已提交
122
        "X",
123 124
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
125 126
    AddAttr<std::vector<int>>(
        "axis",
127 128 129
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
130 131
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
132 133
        .SetDefault(false)
        .AsExtra();
134 135 136 137 138 139
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
140 141
        .SetDefault("AnyLayout")
        .AsExtra();
142 143 144 145
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
146 147
        .SetDefault(false)
        .AsExtra();
148 149 150 151
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
152 153
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
154
    /* int8 parameters */
X
xzl 已提交
155
    AddComment(R"DOC(
156 157
Transpose Operator.

158 159
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
160

161 162 163 164 165 166
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
167

168
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
169

170
    then the output $Y$ is:
W
wanghaoshuang 已提交
171

172 173 174 175 176 177
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
178

179
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
180
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
181

X
xzl 已提交
182 183 184 185 186 187 188 189
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

190
  void InferShape(framework::InferShapeContext *ctx) const override {
191
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
192 193 194 195
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "TransposeOpGrad");
Q
Qiao Longfei 已提交
196 197 198 199 200
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
201
  }
202 203 204 205 206 207 208

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
209 210
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
211 212
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
213
        this->CanMKLDNNBeUsed(ctx, data_type)) {
214 215 216 217
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
218 219
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), layout_, library_);
220
  }
X
xzl 已提交
221 222
};

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
238
    if (!ctx->HasOutput("XShape")) return;
239 240 241 242 243 244
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
245
    ctx->SetOutputDim("XShape", phi::make_ddim(x_shape_dim));
246 247 248 249 250 251
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
252 253
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
254 255
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
256
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
257 258
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "X");
259 260
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
261
        this->CanMKLDNNBeUsed(ctx, data_type)) {
262 263
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
264
      using framework::proto::VarType;
265 266
      auto input_data_type =
          framework::TransToProtoVarType(ctx.Input<Tensor>("X")->dtype());
267 268 269 270
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
271 272
    }
#endif
273 274
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), layout_, library_, customized_type_value);
275 276 277
  }
};

278
class Transpose2OpMaker : public framework::OpProtoAndCheckerMaker {
279 280
 public:
  void Make() override {
281 282 283 284 285 286 287 288 289
    AddInput(
        "X",
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
    AddAttr<std::vector<int>>(
        "axis",
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
290 291 292
    AddOutput("XShape", "(Tensor)The output tensor.")
        .AsIntermediate()
        .AsExtra();
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    AddComment(R"DOC(
Transpose Operator.

The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.

- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$

    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)

    then the output $Y$ is:

    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$

- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.

)DOC");
321 322 323
  }
};

H
hong 已提交
324 325
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
326
 public:
H
hong 已提交
327
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
328

329
  void Apply(GradOpPtr<T> grad_op) const override {
330
    grad_op->SetType("transpose2_grad");
H
hong 已提交
331 332 333 334
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
335 336 337
  }
};

338 339 340 341 342 343 344 345 346 347 348 349 350 351
template <typename T>
class Transpose2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("transpose2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

352 353 354 355 356
class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
357 358 359 360 361
    OP_INOUT_CHECK(
        ctx->HasInput("XShape"), "Input", "XShape", "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
362
                   "Transpose2OpGrad");
363 364
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
365
      auto x_shape_dim = phi::slice_ddim(xshape_dim, 1, xshape_dim.size());
366 367 368 369 370 371 372 373
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
374 375 376
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
377 378 379
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx,
                                                framework::GradVarName("Out"));
380 381
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
382
        this->CanMKLDNNBeUsed(ctx, data_type)) {
383 384 385 386
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
387 388
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), layout_, library_);
389 390 391
  }
};

H
hong 已提交
392 393 394 395 396 397 398 399
class TransposeGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType(framework::GradVarName("Out"),
                             framework::GradVarName("X"));
  }
};

X
xzl 已提交
400 401 402 403
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
404
REGISTER_OPERATOR(
405 406 407
    transpose,
    ops::TransposeOp,
    ops::TransposeOpMaker,
H
hong 已提交
408 409
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
410 411
REGISTER_OPERATOR(transpose_grad,
                  ops::TransposeOpGrad,
H
hong 已提交
412
                  ops::TransposeGradInferVarType);
413

414 415 416
REGISTER_OPERATOR(transpose2,
                  ops::Transpose2Op,
                  ops::Transpose2OpMaker,
H
hong 已提交
417 418
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
419 420
REGISTER_OPERATOR(transpose2_grad,
                  ops::Transpose2OpGrad,
H
hong 已提交
421
                  ops::TransposeGradInferVarType,
422 423
                  ops::Transpose2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2DoubleGradMaker<paddle::imperative::OpBase>);