test_backward.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np

19 20 21 22
import paddle
import paddle.fluid as fluid
import paddle.static as static

23

24
class BackwardNet:
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    """
    Abstract Base Class.
    All Net inherited this Class should implement two functions:
        build_model: build net to test the logic of backward
        init_data: fake input data to test all programs.
    """

    def __init__(self):
        self.stop_gradient_grad_vars = set()
        self.no_grad_vars = set()
        self.params_names = set()
        self.op_path = []

    def build_model(self):
        """
        Build net to test the logic of backward.
        :return: loss
        """
        raise NotImplementedError

    def init_data(self):
        """
        Fake input data to test all programs.
        :return: dict, {'var_name': var_data}
        """
        raise NotImplementedError
51 52


53
class TestBackward(unittest.TestCase):
54 55 56 57 58 59
    """
    All related TestClass should inherit this class,
    and only implement test_backward function.
    """

    def _check_all(self, net):
60 61 62 63 64
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
65 66 67 68 69 70
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
71 72
            loss = net.build_model()
            self._check_backward(loss, main)
73 74 75

            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)
76 77 78 79 80 81 82 83 84 85
            exe.run(startup)
            exe.run(feed=net.init_data())

    def _check_backward(self, loss, main_program):
        global_block_idx = self.global_block_idx
        params_grads = self._check_params_grad(loss)
        # 1.1 get_stop_gradients
        no_grad_dict = self._check_stop_gradient(main_program)
        # 1.2 find_op_path
        op_path, block_no_grad_set = self._check_op_path(
86 87
            main_program.block(global_block_idx), [loss], [], no_grad_dict
        )
88 89
        # 1.3 _find_no_grad_vars
        no_grad_vars = self._check_find_no_grad_vars(
90 91 92 93 94
            main_program.block(global_block_idx),
            op_path,
            [loss],
            block_no_grad_set,
        )
95 96 97
        # update no_grad_dict
        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[global_block_idx].update(
98 99
            list(map(fluid.backward._append_grad_suffix_, block_no_grad_set))
        )
100 101

    def _check_params_grad(self, loss, parameter_list=None, no_grad_set=None):
102 103 104
        params_grads = fluid.backward.append_backward(
            loss, parameter_list, no_grad_set
        )
105
        params_names = set(
106 107
            [param_var.name for (param_var, grad_var) in params_grads]
        )
108 109 110 111 112 113 114
        self.assertSetEqual(params_names, self.net.params_names)

        return params_grads

    def _check_stop_gradient(self, program):
        no_grad_dict = fluid.backward._get_stop_gradients_(program)
        if no_grad_dict is not None and isinstance(no_grad_dict, dict):
115 116 117 118
            self.assertSetEqual(
                no_grad_dict[self.global_block_idx],
                self.net.stop_gradient_grad_vars,
            )
119 120 121 122 123 124 125 126

        return no_grad_dict

    def _check_op_path(self, root_block, outputs, inputs=[], no_grad_dict=None):
        if no_grad_dict is None or not isinstance(no_grad_dict, dict):
            block_no_grad_set = None
        else:
            block_no_grad_set = set(
127 128 129 130 131 132 133 134
                map(
                    fluid.backward._strip_grad_suffix_,
                    no_grad_dict[self.global_block_idx],
                )
            )
        op_path = fluid.backward._find_op_path_(
            root_block, outputs, inputs, block_no_grad_set
        )
135 136 137 138 139
        op_types = [op.type for op in op_path]
        self.assertListEqual(op_types, self.net.op_path)

        return op_path, block_no_grad_set

140 141 142
    def _check_find_no_grad_vars(
        self, root_block, op_path, targets, block_no_grad_set
    ):
143
        no_grad_vars = fluid.backward._find_no_grad_vars(
144 145
            root_block, op_path, targets, block_no_grad_set
        )
146 147 148 149
        self.assertSetEqual(no_grad_vars, self.net.no_grad_vars)

        return no_grad_vars

150
    def _check_error_param_list(self, net, parameter_list):
151 152 153 154 155
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
156 157 158 159 160 161 162 163 164 165 166 167
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, parameter_list=parameter_list)
            exe.run(startup)
            exe.run(feed=net.init_data())

168
    def _check_error_no_grad_set(self, net, no_grad_set):
169 170 171 172 173
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
174 175 176 177 178 179 180 181 182 183 184 185
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, no_grad_set=no_grad_set)
            exe.run(startup)
            exe.run(feed=net.init_data())

186 187 188

class SimpleNet(BackwardNet):
    def __init__(self):
189
        super().__init__()
190 191
        self.stop_gradient_grad_vars = set(
            [
192 193 194 195
                'x_no_grad@GRAD',
                'x2_no_grad@GRAD',
                'x3_no_grad@GRAD',
                'label_no_grad@GRAD',
196 197
            ]
        )
198
        self.no_grad_vars = set()
199
        self.params_names = set(['w2v', 'fc_predict.b_0', 'fc_w'])
200
        self.op_path = [
201 202 203 204 205 206 207 208 209
            'lookup_table_v2',
            'lookup_table_v2',  # embedding
            'elementwise_add',  # merge
            'mul',
            'elementwise_add',
            'softmax',  # fc
            'elementwise_sub',
            'square',
            'reduce_mean',
210 211 212 213 214 215 216 217 218 219 220 221 222
        ]  # loss
        self.shape = [16, 50]

    def init_data(self):
        assert len(self.shape) == 2
        x = np.random.randint(0, 90, self.shape).astype('int64')
        x2 = np.random.randint(0, 90, self.shape).astype('int64')
        x3 = np.random.randint(0, 90, self.shape).astype('int64')
        label = np.random.random([self.shape[0], 1]).astype('float32')
        return {
            'x_no_grad': x,
            'x2_no_grad': x2,
            'x3_no_grad': x3,
223
            'label_no_grad': label,
224 225 226 227 228 229 230
        }

    def build_model(self):
        # stop_gradient = True in input
        x = fluid.data(name='x_no_grad', shape=self.shape, dtype='int64')
        x2 = fluid.data(name='x2_no_grad', shape=self.shape, dtype='int64')
        x3 = fluid.data(name='x3_no_grad', shape=self.shape, dtype='int64')
231 232 233
        label = fluid.data(
            name='label_no_grad', shape=[self.shape[0], 1], dtype='float32'
        )
234 235
        # shared layer, the grad of 'w2v' will be summed and renamed.
        # To test  _addup_repetitive_outputs_
236 237 238 239 240 241 242 243 244
        x_emb = fluid.embedding(
            x, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v')
        )
        x2_emb = fluid.embedding(
            x2, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v')
        )
        x3_emb = fluid.embedding(
            x3, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v')
        )
245
        # merge layers
246 247
        x_merge = paddle.add(x_emb, x2_emb, name='x_add_x2')
        x2_merge = paddle.add(x2_emb, x3_emb, name='x2_add_x3')
248
        # shared fc_w
249 250 251 252 253 254 255
        predict = fluid.layers.fc(
            input=x_merge,
            size=1,
            act='softmax',
            param_attr=fluid.ParamAttr(name='fc_w'),
            name='fc_predict',
        )
256
        # useless layer for calculating loss
257 258 259 260 261 262 263
        fc_no_use = fluid.layers.fc(
            input=x2_merge,
            size=1,
            act='sigmoid',
            param_attr=fluid.ParamAttr(name='fc_w'),
            name='fc_no_use',
        )
264 265
        # loss
        cost = fluid.layers.square_error_cost(input=predict, label=label)
266
        loss = paddle.mean(cost, name='mean_loss')
267 268 269 270 271

        return loss


class TestSimpleNet(TestBackward):
272
    def test_backward(self):
273 274 275 276 277 278 279 280
        """
        Instantiate each NetClass to test backward.
        """
        self.global_block_idx = 0
        self.net = SimpleNet()
        self._check_all(self.net)


281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class TestGradientsError(unittest.TestCase):
    def test_error(self):
        x = fluid.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
        x.stop_gradient = False
        conv = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
        y = fluid.layers.relu(conv)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y.name, x)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y, x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], [x], target_gradients=x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], x, no_grad_set=conv)


301 302 303 304 305 306 307
class TestSimpleNetWithErrorParamList(TestBackward):
    def test_parameter_list_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of parameter_list argument must be list or tuple
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, "test")
308
        # The type of parameter_list's member must be Variable or str
309 310 311 312 313
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, [test, "test", 3])


314 315 316 317 318 319 320 321 322 323 324 325 326
class TestSimpleNetWithErrorNoGradSet(TestBackward):
    def test_no_grad_set_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of no_grad_set argument must be set or list or tuple
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, "test")
        # The type of no_grad_set's member must be Variable or str
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, [test, "test", 3])


327 328 329 330 331 332 333
class TestAppendBackwardWithError(unittest.TestCase):
    def build_net(self):
        x = fluid.data(name='x', shape=[None, 13], dtype='int64')
        y = fluid.data(name='y', shape=[None, 1], dtype='float32')
        x_emb = fluid.embedding(x, size=[100, 256])
        y_predict = fluid.layers.fc(input=x_emb, size=1, name='my_fc')
        loss = fluid.layers.square_error_cost(input=y_predict, label=y)
334
        avg_loss = paddle.mean(loss)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        param_names = [
            param.name
            for param in fluid.default_main_program().block(0).all_parameters()
        ]

        return avg_loss, param_names

    def setUp(self):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            self.avg_loss, self.param_names = self.build_net()

    def test_loss_type_error(self):
        with self.assertRaises(TypeError):
            fluid.backward.append_backward(loss=self.avg_loss.name)

    def test_parameter_list_type_error(self):
        with self.assertRaises(TypeError):
            self.param_names[0] = np.random.random([10])
354 355 356
            fluid.backward.append_backward(
                loss=self.avg_loss, parameter_list=self.param_names
            )
357 358 359 360 361 362 363

    def test_callback_type_error(self):
        with self.assertRaises(TypeError):

            def callback(block, context):
                return

364 365 366
            fluid.backward.append_backward(
                loss=self.avg_loss, callbacks=callback
            )
367 368


369 370 371 372 373
class TestGradientsWithOptimizer(unittest.TestCase):
    def _check_grad_op_name(self, forward_list, optimiezed_list):
        backward_list = [op + "_grad" for op in reversed(forward_list)]
        idx = optimiezed_list.index(backward_list[0], len(backward_list))

374 375 376
        self.assertListEqual(
            backward_list, optimiezed_list[idx : idx + len(backward_list)]
        )
377 378 379 380 381 382 383 384 385 386 387 388

    def test_gradient_with_optimizer(self):
        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)

            forward_list = [o.type for o in main.current_block().ops]
389 390 391 392 393 394
            (
                optimize_ops,
                pram_grads,
            ) = paddle.autograd.backward_mode.gradients_with_optimizer(
                main, opt
            )
395 396 397 398 399 400 401 402

            optimized_list = [o.type for o in main.current_block().ops]

            self.assertGreater(len(optimized_list), len(forward_list))
            self.assertIn(opt.type, optimized_list)
            self._check_grad_op_name(forward_list, optimized_list)


403 404 405
# TODO(Aurelius84): add conditional network test
class ConditionalNet(BackwardNet):
    def __init__(self):
406
        super().__init__()
407 408 409


if __name__ == '__main__':
410
    paddle.enable_static()
411
    unittest.main()