test_backward.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
17 18 19
import paddle.static as static
import paddle

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import numpy as np


class BackwardNet(object):
    """
    Abstract Base Class.
    All Net inherited this Class should implement two functions:
        build_model: build net to test the logic of backward
        init_data: fake input data to test all programs.
    """

    def __init__(self):
        self.stop_gradient_grad_vars = set()
        self.no_grad_vars = set()
        self.params_names = set()
        self.op_path = []

    def build_model(self):
        """
        Build net to test the logic of backward.
        :return: loss
        """
        raise NotImplementedError

    def init_data(self):
        """
        Fake input data to test all programs.
        :return: dict, {'var_name': var_data}
        """
        raise NotImplementedError
50 51


52
class TestBackward(unittest.TestCase):
53 54 55 56 57 58
    """
    All related TestClass should inherit this class,
    and only implement test_backward function.
    """

    def _check_all(self, net):
59 60
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
61 62 63 64 65 66
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
67 68
            loss = net.build_model()
            self._check_backward(loss, main)
69 70 71

            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            exe.run(startup)
            exe.run(feed=net.init_data())

    def _check_backward(self, loss, main_program):
        global_block_idx = self.global_block_idx
        params_grads = self._check_params_grad(loss)
        # 1.1 get_stop_gradients
        no_grad_dict = self._check_stop_gradient(main_program)
        # 1.2 find_op_path
        op_path, block_no_grad_set = self._check_op_path(
            main_program.block(global_block_idx), [loss], [], no_grad_dict)
        # 1.3 _find_no_grad_vars
        no_grad_vars = self._check_find_no_grad_vars(
            main_program.block(global_block_idx), op_path, [loss],
            block_no_grad_set)
        # update no_grad_dict
        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[global_block_idx].update(
            list(map(fluid.backward._append_grad_suffix_, block_no_grad_set)))

    def _check_params_grad(self, loss, parameter_list=None, no_grad_set=None):
        params_grads = fluid.backward.append_backward(loss, parameter_list,
                                                      no_grad_set)
        params_names = set(
            [param_var.name for (param_var, grad_var) in params_grads])
        self.assertSetEqual(params_names, self.net.params_names)

        return params_grads

    def _check_stop_gradient(self, program):
        no_grad_dict = fluid.backward._get_stop_gradients_(program)
        if no_grad_dict is not None and isinstance(no_grad_dict, dict):
            self.assertSetEqual(no_grad_dict[self.global_block_idx],
                                self.net.stop_gradient_grad_vars)

        return no_grad_dict

    def _check_op_path(self, root_block, outputs, inputs=[], no_grad_dict=None):
        if no_grad_dict is None or not isinstance(no_grad_dict, dict):
            block_no_grad_set = None
        else:
            block_no_grad_set = set(
114 115
                map(fluid.backward._strip_grad_suffix_,
                    no_grad_dict[self.global_block_idx]))
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        op_path = fluid.backward._find_op_path_(root_block, outputs, inputs,
                                                block_no_grad_set)
        op_types = [op.type for op in op_path]
        self.assertListEqual(op_types, self.net.op_path)

        return op_path, block_no_grad_set

    def _check_find_no_grad_vars(self, root_block, op_path, targets,
                                 block_no_grad_set):
        no_grad_vars = fluid.backward._find_no_grad_vars(
            root_block, op_path, targets, block_no_grad_set)
        self.assertSetEqual(no_grad_vars, self.net.no_grad_vars)

        return no_grad_vars

131
    def _check_error_param_list(self, net, parameter_list):
132 133
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
134 135 136 137 138 139 140 141 142 143 144 145
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, parameter_list=parameter_list)
            exe.run(startup)
            exe.run(feed=net.init_data())

146
    def _check_error_no_grad_set(self, net, no_grad_set):
147 148
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
149 150 151 152 153 154 155 156 157 158 159 160
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, no_grad_set=no_grad_set)
            exe.run(startup)
            exe.run(feed=net.init_data())

161 162

class SimpleNet(BackwardNet):
163

164
    def __init__(self):
J
Jiangxinz 已提交
165
        super(SimpleNet, self).__init__()
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        self.stop_gradient_grad_vars = set([
            u'x_no_grad@GRAD', u'x2_no_grad@GRAD', u'x3_no_grad@GRAD',
            u'label_no_grad@GRAD'
        ])
        self.no_grad_vars = set()
        self.params_names = set([u'w2v', u'fc_predict.b_0', u'fc_w'])
        self.op_path = [
            u'lookup_table_v2',
            u'lookup_table_v2',  # embedding
            u'elementwise_add',  # merge
            u'mul',
            u'elementwise_add',
            u'softmax',  # fc
            u'elementwise_sub',
            u'square',
181
            u'reduce_mean'
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        ]  # loss
        self.shape = [16, 50]

    def init_data(self):
        assert len(self.shape) == 2
        x = np.random.randint(0, 90, self.shape).astype('int64')
        x2 = np.random.randint(0, 90, self.shape).astype('int64')
        x3 = np.random.randint(0, 90, self.shape).astype('int64')
        label = np.random.random([self.shape[0], 1]).astype('float32')
        return {
            'x_no_grad': x,
            'x2_no_grad': x2,
            'x3_no_grad': x3,
            'label_no_grad': label
        }

    def build_model(self):
        # stop_gradient = True in input
        x = fluid.data(name='x_no_grad', shape=self.shape, dtype='int64')
        x2 = fluid.data(name='x2_no_grad', shape=self.shape, dtype='int64')
        x3 = fluid.data(name='x3_no_grad', shape=self.shape, dtype='int64')
203 204 205
        label = fluid.data(name='label_no_grad',
                           shape=[self.shape[0], 1],
                           dtype='float32')
206 207
        # shared layer, the grad of 'w2v' will be summed and renamed.
        # To test  _addup_repetitive_outputs_
208 209 210 211 212 213 214 215 216
        x_emb = fluid.embedding(x,
                                size=[100, 64],
                                param_attr=fluid.ParamAttr(name='w2v'))
        x2_emb = fluid.embedding(x2,
                                 size=[100, 64],
                                 param_attr=fluid.ParamAttr(name='w2v'))
        x3_emb = fluid.embedding(x3,
                                 size=[100, 64],
                                 param_attr=fluid.ParamAttr(name='w2v'))
217 218
        # merge layers
        x_merge = fluid.layers.elementwise_add(x_emb, x2_emb, name='x_add_x2')
219 220 221
        x2_merge = fluid.layers.elementwise_add(x2_emb,
                                                x3_emb,
                                                name='x2_add_x3')
222 223 224 225 226 227 228 229 230 231 232 233 234 235
        # shared fc_w
        predict = fluid.layers.fc(input=x_merge,
                                  size=1,
                                  act='softmax',
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  name='fc_predict')
        # useless layer for calculating loss
        fc_no_use = fluid.layers.fc(input=x2_merge,
                                    size=1,
                                    act='sigmoid',
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    name='fc_no_use')
        # loss
        cost = fluid.layers.square_error_cost(input=predict, label=label)
236
        loss = paddle.mean(cost, name='mean_loss')
237 238 239 240 241

        return loss


class TestSimpleNet(TestBackward):
242

243
    def test_backward(self):
244 245 246 247 248 249 250 251
        """
        Instantiate each NetClass to test backward.
        """
        self.global_block_idx = 0
        self.net = SimpleNet()
        self._check_all(self.net)


252
class TestGradientsError(unittest.TestCase):
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def test_error(self):
        x = fluid.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
        x.stop_gradient = False
        conv = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
        y = fluid.layers.relu(conv)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y.name, x)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y, x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], [x], target_gradients=x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], x, no_grad_set=conv)


273
class TestSimpleNetWithErrorParamList(TestBackward):
274

275 276 277 278 279 280
    def test_parameter_list_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of parameter_list argument must be list or tuple
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, "test")
281
        # The type of parameter_list's member must be Variable or str
282 283 284 285 286
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, [test, "test", 3])


287
class TestSimpleNetWithErrorNoGradSet(TestBackward):
288

289 290 291 292 293 294 295 296 297 298 299 300
    def test_no_grad_set_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of no_grad_set argument must be set or list or tuple
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, "test")
        # The type of no_grad_set's member must be Variable or str
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, [test, "test", 3])


301
class TestAppendBackwardWithError(unittest.TestCase):
302

303 304 305 306 307 308
    def build_net(self):
        x = fluid.data(name='x', shape=[None, 13], dtype='int64')
        y = fluid.data(name='y', shape=[None, 1], dtype='float32')
        x_emb = fluid.embedding(x, size=[100, 256])
        y_predict = fluid.layers.fc(input=x_emb, size=1, name='my_fc')
        loss = fluid.layers.square_error_cost(input=y_predict, label=y)
309
        avg_loss = paddle.mean(loss)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        param_names = [
            param.name
            for param in fluid.default_main_program().block(0).all_parameters()
        ]

        return avg_loss, param_names

    def setUp(self):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            self.avg_loss, self.param_names = self.build_net()

    def test_loss_type_error(self):
        with self.assertRaises(TypeError):
            fluid.backward.append_backward(loss=self.avg_loss.name)

    def test_parameter_list_type_error(self):
        with self.assertRaises(TypeError):
            self.param_names[0] = np.random.random([10])
329 330
            fluid.backward.append_backward(loss=self.avg_loss,
                                           parameter_list=self.param_names)
331 332 333 334 335 336 337

    def test_callback_type_error(self):
        with self.assertRaises(TypeError):

            def callback(block, context):
                return

338 339
            fluid.backward.append_backward(loss=self.avg_loss,
                                           callbacks=callback)
340 341


342
class TestGradientsWithOptimizer(unittest.TestCase):
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    def _check_grad_op_name(self, forward_list, optimiezed_list):
        backward_list = [op + "_grad" for op in reversed(forward_list)]
        idx = optimiezed_list.index(backward_list[0], len(backward_list))

        self.assertListEqual(backward_list,
                             optimiezed_list[idx:idx + len(backward_list)])

    def test_gradient_with_optimizer(self):
        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)

            forward_list = [o.type for o in main.current_block().ops]
            optimize_ops, pram_grads = paddle.autograd.backward_mode.gradients_with_optimizer(
                main, opt)

            optimized_list = [o.type for o in main.current_block().ops]

            self.assertGreater(len(optimized_list), len(forward_list))
            self.assertIn(opt.type, optimized_list)
            self._check_grad_op_name(forward_list, optimized_list)


372 373
# TODO(Aurelius84): add conditional network test
class ConditionalNet(BackwardNet):
374

375
    def __init__(self):
J
Jiangxinz 已提交
376
        super(ConditionalNet, self).__init__()
377 378 379


if __name__ == '__main__':
380
    paddle.enable_static()
381
    unittest.main()