mkldnn_helper.h 22.0 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
J
Jacek Czaja 已提交
17
#include <iostream>
P
Physher 已提交
18
#include <memory>
J
Jacek Czaja 已提交
19
#include <sstream>
G
gongweibao 已提交
20
#include <string>
21
#include <utility>
22
#include <vector>
23

24
#include "dnnl.hpp"
25
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
26
#include "paddle/fluid/platform/place.h"
C
chenjian 已提交
27
#include "paddle/fluid/platform/profiler/event_tracing.h"
T
tensor-tang 已提交
28
namespace paddle {
29
#ifdef PADDLE_WITH_MKLDNN
30
using MKLDNNMemoryFormat = dnnl::memory::format_tag;
31
#endif
T
tensor-tang 已提交
32 33
namespace platform {

34 35 36 37 38 39
using MKLDNNStream = dnnl::stream;
using MKLDNNEngine = dnnl::engine;
using MKLDNNMemory = dnnl::memory;
using MKLDNNMemoryDescriptor = dnnl::memory::desc;
using MKLDNNPrimitive = dnnl::primitive;
using MKLDNNPrimitiveDesc = dnnl::handle<dnnl_primitive_desc_t>;
T
tensor-tang 已提交
40

41 42 43 44 45
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
46

47 48 49 50 51
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
52 53 54 55 56
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

57 58 59 60 61 62 63 64 65
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
66
  auto desc = tf_desc<Type>(dnnl::prop_kind::forward, (args)...);
67 68 69 70 71
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
72 73
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e,
                                   const Primitive& p,
74 75 76 77 78
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

79 80 81
inline void MatchShapeToLayout(framework::Tensor* tensor_in,
                               framework::DataLayout from,
                               framework::DataLayout to) {
J
Jacek Czaja 已提交
82 83 84 85 86 87
  auto print_dims = [](const std::vector<int>& dims) {
    std::ostringstream oss;

    if (!dims.empty()) {
      oss << "[";
      // Convert all but the last element to avoid a trailing ","
88 89
      std::copy(
          dims.begin(), dims.end() - 1, std::ostream_iterator<int>(oss, ","));
J
Jacek Czaja 已提交
90 91 92 93 94 95 96 97

      // Now add the last element with no delimiter
      oss << dims.back() << "]";
    }

    return oss.str();
  };

98 99 100 101 102 103 104 105 106
  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
  if (tensor_in->dims().size() < 3) {
    VLOG(3) << "Keeping kMKLDNN/kNHWC/kNDHWC output_shape"
            << print_dims(phi::vectorize<int>(tensor_in->dims()));
    return;
  }

107 108
  switch (from) {
    case framework::DataLayout::kMKLDNN:
109 110
      if ((to == framework::DataLayout::kNHWC) ||
          (to == framework::DataLayout::kNDHWC)) {
111
        auto dims = phi::vectorize<int>(tensor_in->dims());
112
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
113
        tensor_in->Resize(phi::make_ddim(dims));
114
        VLOG(3) << "Rotating Shape from: kMKLDNN to: kNHWC/kNDHWC output_shape"
J
Jacek Czaja 已提交
115
                << print_dims(dims);
116 117 118
      }
      break;
    case framework::DataLayout::kNHWC:
119
    case framework::DataLayout::kNDHWC:
120
      if (to == framework::DataLayout::kMKLDNN) {
121
        auto dims = phi::vectorize<int>(tensor_in->dims());
122
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
123
        tensor_in->Resize(phi::make_ddim(dims));
124
        VLOG(3) << "Rotating Shape from: kNHWC/kNDHWC to: kMKLDNN output_shape"
J
Jacek Czaja 已提交
125
                << print_dims(dims);
126 127 128 129 130 131 132
      }
      break;
    default:
      break;
  }
}

133 134 135 136 137
struct mkldnn_dummy_primitive {
  struct primitive_desc {};
  struct desc {};
};

138 139 140 141
inline dnnl::memory::desc MKLDNNMemDesc(const std::vector<int64_t>& dims,
                                        dnnl::memory::data_type data_type,
                                        MKLDNNMemoryFormat format) {
  return dnnl::memory::desc({dims}, data_type, format);
142 143
}

144 145
inline void ClearMKLDNNCache(const platform::Place& place,
                             void* ptr = nullptr) {
146 147 148 149 150
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
151
    dev_ctx->ResetBlobMap(ptr);
152 153 154
  }
}

155 156 157 158 159 160 161 162 163 164
inline void DontClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->BlockNextCacheClearing();
  }
}

165
template <typename Type>
166 167
dnnl::memory::data_type MKLDNNGetDataType() {
  return dnnl::memory::data_type::undef;
168 169 170
}

template <>
171 172
inline dnnl::memory::data_type MKLDNNGetDataType<float>() {
  return dnnl::memory::data_type::f32;
173 174
}
template <>
175 176
inline dnnl::memory::data_type MKLDNNGetDataType<int32_t>() {
  return dnnl::memory::data_type::s32;
177
}
P
Physher 已提交
178
template <>
179 180
inline dnnl::memory::data_type MKLDNNGetDataType<int8_t>() {
  return dnnl::memory::data_type::s8;
P
Physher 已提交
181 182
}
template <>
183 184
inline dnnl::memory::data_type MKLDNNGetDataType<uint8_t>() {
  return dnnl::memory::data_type::u8;
P
Physher 已提交
185 186
}

187
template <>
188 189
inline dnnl::memory::data_type MKLDNNGetDataType<paddle::platform::bfloat16>() {
  return dnnl::memory::data_type::bf16;
190 191
}

192 193
inline void Reorder(dnnl::memory src,
                    dnnl::memory dst,
194 195
                    const dnnl::engine& engine) {
  auto reorder_prim = dnnl::reorder(src, dst);
196
  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
197
  platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
198
                                       platform::TracerEventType::UserDefined,
199 200
                                       2,
                                       platform::EventRole::kUniqueOp);
A
Adam 已提交
201 202
  reorder_prim.execute(astream, src, dst);
  astream.wait();
M
mozga-intel 已提交
203 204
}

205
inline dnnl::memory::format_tag GetMKLDNNFormat(dnnl::memory::desc mem_desc) {
A
Adam 已提交
206 207 208 209 210 211 212
  auto ndims = mem_desc.data.ndims;
  auto strides = mem_desc.data.format_desc.blocking.strides;
  auto inner_nblks = mem_desc.data.format_desc.blocking.inner_nblks;
  auto inner_blks = mem_desc.data.format_desc.blocking.inner_blks;
  auto inner_idxs = mem_desc.data.format_desc.blocking.inner_idxs;

  if (ndims == 1) {
213
    return dnnl::memory::format_tag::x;
A
Adam 已提交
214 215 216
  } else if (ndims == 2) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1]) {
217
        return dnnl::memory::format_tag::nc;
A
Adam 已提交
218
      } else {
219
        return dnnl::memory::format_tag::cn;
A
Adam 已提交
220 221 222 223 224
      }
    }
  } else if (ndims == 3) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2]) {
225
        return dnnl::memory::format_tag::ncw;
A
Adam 已提交
226
      } else if (strides[1] >= strides[0] && strides[0] >= strides[2]) {
227
        return dnnl::memory::format_tag::ntc;
A
Adam 已提交
228
      } else {
229
        return dnnl::memory::format_tag::nwc;
A
Adam 已提交
230 231 232 233 234 235
      }
    }
  } else if (ndims == 4) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3]) {
236
        return dnnl::memory::format_tag::nchw;
237 238
      } else if (strides[2] >= strides[3] && strides[3] >= strides[1] &&
                 strides[1] >= strides[0]) {
239
        return dnnl::memory::format_tag::cdba;
240 241 242
      } else if (strides[3] >= strides[2] && strides[2] >= strides[0] &&
                 strides[0] >= strides[1]) {
        return dnnl::memory::format_tag::dcab;
A
Adam 已提交
243
      } else {
244
        return dnnl::memory::format_tag::nhwc;
A
Adam 已提交
245 246 247
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
248
        return dnnl::memory::format_tag::nChw16c;
A
Adam 已提交
249
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
250
        return dnnl::memory::format_tag::nChw8c;
A
Adam 已提交
251 252 253
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
254
          return dnnl::memory::format_tag::Acdb8a;
A
Adam 已提交
255 256
        }
      } else if (inner_blks[0] == 4 && inner_idxs[0] == 1) {
257
        return dnnl::memory::format_tag::nChw4c;
A
Adam 已提交
258 259 260
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
261
          return dnnl::memory::format_tag::Acdb16a;
A
Adam 已提交
262 263 264 265 266
        }
      }
    } else if (inner_nblks == 2) {
      if (inner_blks[0] == 16 && inner_blks[1] == 16) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
267
          return dnnl::memory::format_tag::OIhw16i16o;
A
Adam 已提交
268 269 270
        }
      } else if (inner_blks[0] == 8 && inner_blks[1] == 8) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
271
          return dnnl::memory::format_tag::OIhw8i8o;
A
Adam 已提交
272 273 274 275 276 277 278
        }
      }
    }
  } else if (ndims == 5) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4]) {
279 280 281 282 283 284 285
        return dnnl::memory::format_tag::abcde;
      } else if (strides[0] >= strides[2] && strides[2] >= strides[1] &&
                 strides[1] >= strides[3] && strides[3] >= strides[4]) {
        return dnnl::memory::format_tag::acbde;
      } else if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
                 strides[3] >= strides[4] && strides[4] >= strides[1]) {
        return dnnl::memory::format_tag::acdeb;
A
Adam 已提交
286 287
      }
    } else if (inner_nblks == 1) {
288 289 290 291 292 293
      if (inner_blks[0] == 4 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return dnnl::memory::format_tag::aBcde4b;
        }
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
A
Adam 已提交
294 295
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
296
          return dnnl::memory::format_tag::Acdeb8a;
A
Adam 已提交
297
        }
298 299
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
300
          return dnnl::memory::format_tag::Abcde8a;
301
        }
A
Adam 已提交
302 303 304
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
305
          return dnnl::memory::format_tag::aBcde8b;
A
Adam 已提交
306 307 308 309
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
310
          return dnnl::memory::format_tag::Acdeb16a;
A
Adam 已提交
311
        }
312 313
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
314
          return dnnl::memory::format_tag::Abcde16a;
315
        }
A
Adam 已提交
316 317 318
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
319
          return dnnl::memory::format_tag::aBcde16b;
A
Adam 已提交
320 321 322 323 324 325 326 327
        }
      }
    }
  } else if (ndims == 6) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4] &&
          strides[4] >= strides[5]) {
328
        return dnnl::memory::format_tag::abcdef;
329 330 331 332
      } else if (strides[0] >= strides[2] && strides[2] >= strides[1] &&
                 strides[1] >= strides[3] && strides[3] >= strides[4] &&
                 strides[4] >= strides[5]) {
        return dnnl::memory::format_tag::acbdef;
A
Adam 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      }
    }
  }
  // DEBUG CODE - KEEP UNTILL TENSOR.MEMORY_DESC IMPLEMENTED
  // std::cout<<"@@@@@@@@@@ UNDEFINED FORMAT @@@@@@@@@@@@@@@@@@@"<<std::endl;
  // std::cout<<"NDIMS: "<<ndims<<std::endl;
  // std::cout<<"INNER_NBLKS: "<<inner_nblks<<std::endl;
  // for (int i=0;i<ndims;++i) {
  //   std::cout<<"STRIDE["<<i<<"]: "<<strides[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_BLKS["<<i<<"]: "<<inner_blks[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_IDXS["<<i<<"]: "<<inner_idxs[i]<<std::endl;
  // }
349
  return dnnl::memory::format_tag::undef;
M
mozga-intel 已提交
350 351
}

352
inline dnnl::memory::format_tag GetMKLDNNFormat(const dnnl::memory memory) {
A
Adam 已提交
353 354
  auto mem_desc = memory.get_desc();
  return GetMKLDNNFormat(mem_desc);
355 356
}

357
inline dnnl::memory::format_tag GetPlainMKLDNNFormat(int tensor_rank) {
358 359
  switch (tensor_rank) {
    case 1:
360
      return dnnl::memory::format_tag::a;
361
    case 2:
362
      return dnnl::memory::format_tag::ab;
363
    case 3:
364
      return dnnl::memory::format_tag::abc;
365
    case 4:
366
      return dnnl::memory::format_tag::abcd;
367
    case 5:
368
      return dnnl::memory::format_tag::abcde;
369
    case 6:
370
      return dnnl::memory::format_tag::abcdef;
371
    case 7:
372
      return dnnl::memory::format_tag::abcdefg;
373
    case 8:
374
      return dnnl::memory::format_tag::abcdefgh;
375
    case 9:
376
      return dnnl::memory::format_tag::abcdefghi;
377 378 379 380 381 382 383 384
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Paddle support tensors with rank in range <1, 9>, but received "
          "tensor with rank: %d",
          tensor_rank));
  }
}

385 386
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
387
  if (dims_size == 1) {
388
    return MKLDNNMemoryFormat::x;
389
  } else if (dims_size == 2) {
390
    return MKLDNNMemoryFormat::nc;
391
  } else if (dims_size == 3) {
392 393 394 395
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
396
    }
397
  } else if (dims_size == 4) {
398 399
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
400
    }
401
  } else if (dims_size == 5) {
402 403
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
404
    }
405 406 407 408
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
409
    }
410
  } else if (dims_size == 6) {
411 412 413
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::abcdef;
    }
414 415 416 417
  }
  return data_format;
}

418
inline MKLDNNMemoryFormat data_format_to_memory_format(
419 420 421
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
422
      return MKLDNNMemoryFormat::nhwc;
423
    case framework::DataLayout::kNCHW:
424
      return MKLDNNMemoryFormat::nchw;
425
    default:
426
      return MKLDNNMemoryFormat::any;
427 428 429
  }
}

430
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
431 432 433
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
434
    return MKLDNNMemoryFormat::nchw;
435
  } else if (!format->compare("nchw16c")) {
436
    return MKLDNNMemoryFormat::nChw16c;
437
  } else if (!format->compare("nchw8c")) {
438
    return MKLDNNMemoryFormat::nChw8c;
439
  } else if (!format->compare("nhwc")) {
440
    return MKLDNNMemoryFormat::nhwc;
441
  } else {
442
    return MKLDNNMemoryFormat::any;
443 444 445
  }
}

A
Adam 已提交
446 447 448 449 450
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

451 452 453
template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
A
Adam 已提交
454 455
}

A
Adam 已提交
456 457
template <>
inline void AppendKey(std::string* key,
458
                      const dnnl::memory::format_tag& format) {
A
Adam 已提交
459 460 461 462 463
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
464
                      const dnnl::memory::data_type& data_type) {
A
Adam 已提交
465 466 467 468
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
469
inline void AppendKey(std::string* key, const dnnl::algorithm& algorithm) {
A
Adam 已提交
470 471 472 473 474
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
475
                      const dnnl::normalization_flags& flags) {
A
Adam 已提交
476 477 478
  key->append(std::to_string(static_cast<int>(flags)));
}

479 480
inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
A
Adam 已提交
481 482
}

483
inline void AppendKey(std::string* key, const char* str) { key->append(str); }
A
Adam 已提交
484

A
Adam 已提交
485 486
template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
487
  for (size_t i = 0; i < dims.size(); i++) {
A
Adam 已提交
488 489 490 491
    AppendKey(key, std::to_string(dims[i]));
  }
}

492 493 494 495
// If MKLDNN build and CPU place then register suffix in DeviceContext
inline void AttachPointerHashToMKLDNNKey(void* ptr,
                                         const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
J
Jacek Czaja 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
    // Static vars will remember first executor and its thread
    // so both of them need to be processed by the same thread within
    // critical section
    static std::mutex static_vars_barrier;
    static_vars_barrier.lock();
    static auto first_exec = ptr;
    static auto first_thread = ThreadIDasStr();
    static_vars_barrier.unlock();

    if (first_exec != ptr) {
      paddle::platform::MKLDNNDeviceContext::tls().set_key_suffix(
          "E" + std::to_string(reinterpret_cast<uintptr_t>(ptr)));
    }
509 510 511
    // Let's register adress of current executor
    paddle::platform::MKLDNNDeviceContext::tls().set_curr_exec(ptr);

J
Jacek Czaja 已提交
512 513 514 515
    // For first thread
    if (first_thread == ThreadIDasStr()) {
      paddle::platform::MKLDNNDeviceContext::tls().disable_tid_in_key();
    }
516 517 518
  }
}

519
template <typename... ArgTypes>
520 521
inline std::string CreateKey(const platform::MKLDNNDeviceContext& dev_ctx,
                             ArgTypes&&... args) {
522
  std::string key;
523
  key.reserve(64);
524
  using expand_type = int[];
525
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
J
Jacek Czaja 已提交
526
  key += paddle::platform::MKLDNNDeviceContext::tls().get_key_suffix();
527 528 529
  return key;
}

530 531
inline std::string ExtendKeyWithThreadInfoIfNeeded(
    const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key) {
J
Jacek Czaja 已提交
532 533
  return (paddle::platform::MKLDNNDeviceContext::tls().is_tid_used_in_key() ==
          true)
534 535 536 537
             ? key + "-t:" + ThreadIDasStr()
             : key;
}

A
Adam 已提交
538 539
inline std::vector<std::vector<int64_t>> ToMkldnnPadding(
    const std::vector<int64_t>& paddings) {
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

560 561 562 563 564 565 566 567 568 569 570 571 572
// The function adjusts the vector of weight dimensions for group convolutions
inline void GetGroupConvWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                                  const int groups) {
  if (groups > 1) {
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
  }
}

J
Jacek Czaja 已提交
573 574 575 576
inline void RegisterModelLayout(
    std::vector<std::unique_ptr<framework::OperatorBase>>& ops,
    const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
577 578 579 580 581 582
    // If there is already registered NHWC then quit this call
    // not to overwrite setting with analysis of internal "while" op block
    if (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
        framework::DataLayout::kNHWC)
      return;

L
Leo Chen 已提交
583
    VLOG(4) << "RegisterModelLayout for mkldnn";
J
Jacek Czaja 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    auto check_attrib = [](std::unique_ptr<framework::OperatorBase>& op,
                           const std::string& attrib_name) -> bool {
      if (op->HasAttr(attrib_name)) {
        auto data_format = op->Attr<std::string>(attrib_name);
        platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
            data_format.compare("NHWC") == 0 ? framework::DataLayout::kNHWC
                                             : framework::DataLayout::kNCHW);
        return true;
      } else {
        return false;
      }
    };

    for (auto& op : ops) {
      if (check_attrib(op, std::string("data_format"))) {
        return;
      }
      if (check_attrib(op, std::string("data_layout"))) {
        return;
      }
    }
  }
}

608 609 610 611 612
inline bool HasOpINT8DataType(const paddle::framework::OpDesc* op) {
  return (op->GetAttrIfExists<std::string>("mkldnn_data_type") == "int8" ||
          op->GetAttrIfExists<bool>("use_quantizer"));
}

613 614 615 616 617 618 619
inline bool HasOpBFLOAT16DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "bfloat16";
}

inline bool HasOpFLOAT32DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "float32";
}
A
Adam Osewski 已提交
620

A
Adam 已提交
621 622
enum class RNNReorderType { PP_NTC, PP_TNC, NTC_PP, TNC_PP };

A
Adam Osewski 已提交
623 624 625 626 627
template <typename T>
bool constexpr is_int8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

T
tensor-tang 已提交
628 629
}  // namespace platform
}  // namespace paddle