multiary.cc 153.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/multiary.h"
16

17
#include <vector>
18

19 20
#include "glog/logging.h"

P
pangengzheng 已提交
21
#include "paddle/phi/backends/device_memory_aligment.h"
W
wanghuancoder 已提交
22
#include "paddle/phi/common/data_type.h"
H
hong 已提交
23
#include "paddle/phi/common/layout.h"
24
#include "paddle/phi/common/scalar.h"
H
hong 已提交
25
#include "paddle/phi/core/infermeta_utils.h"
26
#include "paddle/phi/core/meta_tensor.h"
27
#include "paddle/phi/core/utils/data_type.h"
28
#include "paddle/phi/infermeta/binary.h"
W
wanghuancoder 已提交
29
#include "paddle/phi/infermeta/nullary.h"
30
#include "paddle/phi/kernels/funcs/common_shape.h"
31
#include "paddle/phi/kernels/funcs/concat_funcs.h"
32

33
namespace phi {
34

35 36
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors) {
37 38 39 40 41 42 43 44
  std::vector<DDim> dims;
  dims.reserve(tensors.size());
  for (const MetaTensor* tensor : tensors) {
    dims.emplace_back(tensor->dims());
  }
  return dims;
}

F
From00 已提交
45 46 47 48
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
49
                       const MetaTensor& learning_rate,
50
                       const MetaTensor& master_param,
F
From00 已提交
51 52
                       float rho,
                       float epsilon,
53
                       bool multi_precision,
F
From00 已提交
54 55
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
56 57
                       MetaTensor* avg_squared_update_out,
                       MetaTensor* master_param_out) {
58 59 60 61 62
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_EQ(
      phi::product(lr_dims),
      1,
      phi::errors::InvalidArgument("LearningRate should have one element"));
F
From00 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad.dims(),
      errors::InvalidArgument(
          "Param and grad input of AdadeltaOp should have same dimension."));
  PADDLE_ENFORCE_EQ(
      param_dims,
      avg_squared_grad.dims(),
      errors::InvalidArgument("Param and AvgSquaredGrad input of AdadeltaOp "
                              "should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      avg_squared_update.dims(),
      errors::InvalidArgument("Param and AvgSquaredUpdate input of AdadeltaOp "
                              "should have same dimension"));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  avg_squared_grad_out->set_dims(param_dims);
  avg_squared_grad_out->set_dtype(avg_squared_grad.dtype());

  avg_squared_update_out->set_dims(param_dims);
  avg_squared_update_out->set_dtype(avg_squared_update.dtype());
}

H
hong 已提交
90 91 92 93
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
94
                      const MetaTensor& master_param,
H
hong 已提交
95
                      float epsilon,
96
                      bool multi_precision,
H
hong 已提交
97
                      MetaTensor* param_out,
98 99
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out) {
H
hong 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_EQ(
      phi::product(lr_dims),
      1,
      phi::errors::InvalidArgument("LearningRate should have one element"));
  auto param_dims = param.dims();

  PADDLE_ENFORCE_EQ(
      param_dims,
      moment.dims(),
      phi::errors::InvalidArgument("Param and Moment input of AdagradOp "
                                   "should have the same dimension."));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());
  moment_out->set_dims(param_dims);
  moment_out->set_dtype(moment.dtype());
}

119 120 121 122 123 124 125
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
126 127
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs) {
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_EQ(
      phi::product(lr_dims),
      1,
      errors::InvalidArgument(
          "The number of LearningRate shall be 1, but received %d. Maybe "
          "the Input variable LearningRate has not "
          "been initialized. You may need to confirm "
          "if you put exe.run(startup_program) "
          "after optimizer.minimize function.",
          phi::product(lr_dims)));
  auto beta1_pow_dims = beta1_pow.dims();
  VLOG(3) << "dims of Beta1Pow : [" << beta1_pow_dims << "]";
  PADDLE_ENFORCE_GE(phi::product(beta1_pow_dims),
                    1,
                    errors::InvalidArgument(
                        "The size of Beta1 power accumulator should be greater "
                        "than 0, but received %d.",
                        phi::product(beta1_pow_dims)));
  auto beta2_pow_dims = beta2_pow.dims();
  VLOG(3) << "dims of Beta2Pow : [" << beta2_pow_dims << "]";
  PADDLE_ENFORCE_GE(phi::product(beta2_pow_dims),
                    1,
                    errors::InvalidArgument(
                        "The size of Beta2 power accumulator should be greater "
                        "than 0, but received %d.",
                        phi::product(beta2_pow_dims)));

  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment1.dims(),
      errors::InvalidArgument(
          "Param and Moment1 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment1 dims: [%s].",
          param_dims,
          moment1.dims()));
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment2.dims(),
      errors::InvalidArgument(
          "Param and Moment2 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment2 dims: [%s].",
          param_dims,
          moment2.dims()));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  moment1_out->set_dims(param_dims);
  moment1_out->set_dtype(moment1.dtype());
  moment2_out->set_dims(param_dims);
  moment2_out->set_dtype(moment2.dtype());

  beta1_pow_out->set_dims(beta1_pow_dims);
  beta1_pow_out->set_dtype(beta1_pow.dtype());
  beta2_pow_out->set_dims(beta2_pow_dims);
  beta2_pow_out->set_dtype(beta2_pow.dtype());
}

F
From00 已提交
201 202 203 204 205 206
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
207
                     const MetaTensor& master_param,
F
From00 已提交
208 209 210
                     float beta1,
                     float beta2,
                     float epsilon,
211
                     bool multi_precision,
F
From00 已提交
212 213
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
214 215
                     MetaTensor* inf_norm_out,
                     MetaTensor* master_param_outs) {
F
From00 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_NE(
      product(lr_dims),
      0,
      errors::InvalidArgument("Maybe the Input variable LearningRate has not "
                              "been initialized. You may need to confirm "
                              "if you put exe.run(startup_program) "
                              "after optimizer.minimize function."));
  PADDLE_ENFORCE_EQ(
      product(lr_dims),
      1,
      errors::InvalidArgument("Learning rate should have 1 dimension"));
  auto beta1_pow_dims = beta1_pow.dims();
  PADDLE_ENFORCE_EQ(product(beta1_pow_dims),
                    1,
                    errors::InvalidArgument(
                        "Beta1 power accumulator should have 1 dimension"));
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad.dims(),
      errors::InvalidArgument(
          "Param and Grad input of AdamaxOp should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment.dims(),
      errors::InvalidArgument(
          "Param and Moment input of AdamaxOp should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      inf_norm.dims(),
      errors::InvalidArgument(
          "Param and InfNorm input of AdamaxOp should have same dimension"));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  moment_out->set_dims(param_dims);
  moment_out->set_dtype(moment.dtype());

  inf_norm_out->set_dims(param_dims);
  inf_norm_out->set_dtype(inf_norm.dtype());
}

260 261 262 263 264 265 266
void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
267 268
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs) {
  AdamInferMeta(param,
                grad,
                learning_rate,
                moment1,
                moment2,
                beta1_pow,
                beta2_pow,
                master_param,
                skip_update,
                beta1,
                beta2,
                epsilon,
                lazy_mode,
                min_row_size_to_use_multithread,
                multi_precision,
                use_global_beta_pow,
                param_out,
                moment1_out,
                moment2_out,
                beta1_pow_out,
                beta2_pow_out,
                master_param_outs);
}

309
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
310 311 312 313 314 315 316 317 318 319 320 321 322
                   MetaTensor* out,
                   MetaConfig config) {
  auto N = x.size();
  PADDLE_ENFORCE_GT(
      N,
      0,
      phi::errors::InvalidArgument(
          "The input tensor X's dimensions of SumOp "
          "should be larger than 0. But received X's dimensions %d.",
          N));
  if (N == 1) {
    VLOG(3) << "Warning: SumOp have only one input, may waste memory";
  }
W
wawltor 已提交
323
  bool is_all_0d_tensor = true;
324 325 326
  phi::DDim in_dim({0});
  for (size_t i = 0; i < x.size(); ++i) {
    auto x_dim = x[i]->dims();
Y
YuanRisheng 已提交
327 328 329 330
    // x_dim.size() == 1 means the real dim of selected rows is [0]
    if (x[i]->is_selected_rows() && x_dim.size() == 1) {
      continue;
    }
331
    // for zero-sized tensor
332 333 334
    if (phi::product(x_dim) == 0) {
      continue;
    }
335 336 337 338
    // for 0D tensor
    if (x_dim.size() == 0) {
      continue;
    }
W
wawltor 已提交
339
    is_all_0d_tensor = false;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    if (phi::product(in_dim) == 0) {
      in_dim = x_dim;
    } else {
      if (config.is_runtime) {
        PADDLE_ENFORCE_EQ(in_dim,
                          x_dim,
                          phi::errors::InvalidArgument(
                              "The input tensor X of SumOp must"
                              " have same shape. But received X[0]'s shape = "
                              "[%s], X[%d]'s shape = [%s].",
                              in_dim,
                              i,
                              x_dim));
      } else {
        PADDLE_ENFORCE_EQ(
            in_dim.size(),
            x_dim.size(),
            phi::errors::InvalidArgument(
                "The input tensor X of SumOp must have same "
                "dimensions. But received X[0]'s dimensions = %d, X[0]'s "
                "shape = "
                "[%s], X[%d]'s dimensions = %d, X[%d]'s shape = [%s].",
                in_dim.size(),
                in_dim,
                i,
                x_dim.size(),
                i,
                x_dim));
        // if in_dim or x_dim has -1, not check equal
        for (int j = 0; j < x_dim.size(); ++j) {
          if (x_dim[j] == -1 || in_dim[j] == -1) {
            continue;
          }
          PADDLE_ENFORCE_EQ(
              in_dim[j],
              x_dim[j],
              phi::errors::InvalidArgument(
                  "The input tensor X of SumOp must have same shape "
                  "if not -1."
                  "But received X[0]'s shape = [%s], X[%d]'s shape = [%s].",
                  in_dim,
                  i,
                  x_dim));
        }
      }
    }
  }
W
wawltor 已提交
387 388 389 390 391
  if (is_all_0d_tensor) {
    out->set_dims(make_ddim({}));
  } else {
    out->set_dims(in_dim);
  }
392 393 394
  out->share_lod(*x[0]);
}

Y
YuanRisheng 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
// TODO(YuanRisheng) This InferMeta is used in Fluid
//                   and will be deleted in the future.
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config) {
  int64_t max_length = 0;
  bool has_tensor_array = false;
  for (auto input : x) {
    if (input->is_tensor_array()) {
      has_tensor_array = true;
      // if input is lod_tensor_array, dims() will return its size (one element)
      max_length =
          input->dims()[0] > max_length ? input->dims()[0] : max_length;
    }
  }

  if (has_tensor_array) {
    if (out->is_tensor_array()) {
      out->set_dims(make_ddim({max_length}));
    }
  } else {
    AddNInferMeta(x, out, config);
  }
}

420 421 422 423
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
424
                  const MetaTensor& ins_tag_weight,
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config) {
  auto predict_dims = input.dims();
  auto label_dims = label.dims();
  PADDLE_ENFORCE_GE(
      predict_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "The Input(Predict) has not been initialized properly. The "
          "shape of Input(Predict) = [%s], the shape size must be "
          "greater_equal 2.",
          predict_dims));
  auto predict_width = predict_dims[1];
  PADDLE_ENFORCE_NE(
      phi::product(predict_dims),
      0,
      phi::errors::InvalidArgument(
          "The Input(Predict) has not been initialized properly. The "
          "shape of Input(Predict) = [%s], the shape can not involes 0.",
          predict_dims));
  PADDLE_ENFORCE_NE(
      phi::product(label_dims),
      0,
      phi::errors::InvalidArgument(
          "The Input(Label) has not been initialized properly. The "
          "shape of Input(Label) = [%s], the shape can not involes 0.",
          label_dims));
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
  if (config.is_runtime) {
    PADDLE_ENFORCE_LE(
        predict_width,
        2,
        phi::errors::InvalidArgument("Only support binary classification,"
                                     "prediction dims[1] should be 1 or 2"));
  }
  auto predict_height = input.dims()[0];
  auto label_height = label.dims()[0];

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        predict_height,
        label_height,
        phi::errors::InvalidArgument("Out and Label should have same height."));
  }

  int num_pred_buckets = num_thresholds + 1;

  PADDLE_ENFORCE_GE(
      num_pred_buckets,
      1,
      phi::errors::InvalidArgument("num_thresholds must larger than 1"));
  PADDLE_ENFORCE_GE(
      slide_steps,
      0,
      phi::errors::InvalidArgument("slide_steps must be natural number"));

486
  auc->set_dims(phi::make_ddim({}));
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  auc->set_dtype(DataType::INT64);

  if (slide_steps) {
    stat_pos_out->set_dims({(1 + slide_steps) * num_pred_buckets + 1});
    stat_pos_out->set_dtype(DataType::INT64);
    stat_neg_out->set_dims({(1 + slide_steps) * num_pred_buckets + 1});
    stat_neg_out->set_dtype(DataType::INT64);
  } else {
    stat_pos_out->set_dims({1, num_pred_buckets});
    stat_pos_out->set_dtype(DataType::INT64);
    stat_neg_out->set_dims({1, num_pred_buckets});
    stat_neg_out->set_dtype(DataType::INT64);
  }
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates) {
  // auto in_dim = param.dims;
  PADDLE_ENFORCE_NE(
      out_sum_1,
      nullptr,
      errors::NotFound(
          "Output(out_sum_1) of AverageAccumulates should not be null."));
  PADDLE_ENFORCE_NE(
      out_sum_2,
      nullptr,
      errors::NotFound(
          "Output(out_sum_2) of AverageAccumulates should not be null."));
  PADDLE_ENFORCE_NE(
      out_sum_3,
      nullptr,
      errors::NotFound(
          "Output(out_sum_3) of AverageAccumulates should not be null."));
  PADDLE_ENFORCE_NE(out_num_accumulates,
                    nullptr,
                    errors::NotFound("Output(out_num_accumulates) of "
                                     "AverageAccumulates should not be null."));

  PADDLE_ENFORCE_NE(out_old_num_accumulates,
                    nullptr,
                    errors::NotFound("Output(out_old_num_accumulates) of "
                                     "AverageAccumulates should not be null."));

  PADDLE_ENFORCE_NE(
      out_num_updates,
      nullptr,
      errors::NotFound(
          "Output(out_num_updates) of AverageAccumulates should not be null."));

  out_sum_1->set_dims(in_sum_1.dims());
  out_sum_1->set_dtype(in_sum_1.dtype());
  out_sum_2->set_dims(in_sum_2.dims());
  out_sum_2->set_dtype(in_sum_2.dtype());
  out_sum_3->set_dims(in_sum_3.dims());
  out_sum_3->set_dtype(in_sum_3.dtype());
  out_num_accumulates->set_dims({1});
  out_num_accumulates->set_dtype(in_num_accumulates.dtype());
  out_old_num_accumulates->set_dims({1});
  out_old_num_accumulates->set_dtype(in_old_num_accumulates.dtype());
  out_num_updates->set_dims({1});
  out_num_updates->set_dtype(in_num_updates.dtype());
}

H
hong 已提交
564 565 566
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
567 568 569
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
                        float momentum,
                        float epsilon,
                        const std::string& data_layout_str,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config) {
  const auto x_dims = x.dims();
  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
        (x_dims[i] == -1) || (x_dims[i] > 0),
        true,
        phi::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
589
            "positive number, but received %d. Input's shape is [%s].",
H
hong 已提交
590 591 592 593
            x_dims[i],
            x_dims));
  }

594
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
H
hong 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims,
          x_dims.size()));
  PADDLE_ENFORCE_LE(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
          x_dims,
          x_dims.size()));

  const int64_t C = ((config.is_run_mkldnn_kernel == true) ||
                             (data_layout == DataLayout::kNCHW)
                         ? x_dims[1]
                         : x_dims[x_dims.size() - 1]);
  auto scale_dim = scale.dims();
  auto bias_dim = bias.dims();

  PADDLE_ENFORCE_EQ(
      scale_dim.size(),
      1UL,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
          scale_dim,
          scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(),
                    1UL,
                    phi::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
                        bias_dim,
                        bias_dim.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(scale_dim[0],
                      C,
                      phi::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
                          C,
                          scale_dim[0]));
    PADDLE_ENFORCE_EQ(bias_dim[0],
                      C,
                      phi::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
                          C,
                          bias_dim[0]));
  }
  y->set_dims(x_dims);
  mean_out->set_dims({C});
  variance_out->set_dims({C});
665 666 667 668 669 670
  if (saved_mean) {
    saved_mean->set_dims({C});
  }
  if (saved_variance) {
    saved_variance->set_dims({C});
  }
671 672 673
  if (reserve_space) {
    reserve_space->set_dims({-1});
  }
H
hong 已提交
674
  y->share_lod(x);
675
  y->set_dtype(x.dtype());
H
hong 已提交
676 677
}

678 679 680
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
681 682
                             const MetaTensor& scale,
                             const MetaTensor& bias,
683 684 685 686 687 688 689 690 691 692
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config) {
  BatchNormInferMeta(x,
                     mean,
                     variance,
693 694 695
                     scale,
                     bias,
                     /*is_test=*/true,
696 697 698 699 700 701 702 703 704 705 706 707 708 709
                     momentum,
                     epsilon,
                     data_layout,
                     /*use_global_stats=*/false,
                     /*trainable_statistics=*/false,
                     y,
                     mean_out,
                     variance_out,
                     /*saved_mean=*/nullptr,
                     /*saved_variance=*/nullptr,
                     /*reserve_space=*/nullptr,
                     config);
}

710 711 712 713 714 715
void BilinearInferMeta(const MetaTensor& x,
                       const MetaTensor& y,
                       const MetaTensor& weight,
                       const MetaTensor& bias,
                       MetaTensor* out,
                       MetaConfig config) {
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      2UL,
      errors::InvalidArgument("The input(X) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      y_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Y) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      weight_dims.size(),
      3UL,
      errors::InvalidArgument(
          "Expected the input(Weight) is a 3D tensor. But received %dD tensor.",
          weight_dims.size()));
  if (config.is_runtime || (x_dims[0] > 0 && y_dims[0] > 0)) {
    PADDLE_ENFORCE_EQ(x_dims[0],
                      y_dims[0],
                      errors::InvalidArgument(
                          "The first dimension(batch_size) of input(X) must be "
                          "equal to the first dimension of the input(Y)."));
  }
  PADDLE_ENFORCE_EQ(x_dims[1],
                    weight_dims[1],
                    errors::InvalidArgument(
                        "The second dimension of input(X) must be equal to "
                        "the second dimension of the input(Weight)."));
  PADDLE_ENFORCE_EQ(y_dims[1],
                    weight_dims[2],
                    errors::InvalidArgument(
                        "The second dimension of input(Y) must be equal to "
                        "the third dimension of the input(Weight)."));

752 753
  if (bias) {
    auto bias_dims = bias.dims();
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    PADDLE_ENFORCE_EQ(bias_dims.size(),
                      2UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      1UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[1],
                      weight_dims[0],
                      errors::InvalidArgument(
                          "The second dimension of input(Bias) must be equal "
                          "to the first dimension of the input(Weight)."));
  }

  out->set_dims({x_dims[0], weight_dims[0]});
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

776
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
                               std::vector<MetaTensor*> out) {
  int target_rank = 0;
  const auto& input_dims = GetMetaTensorsDim(x);

  // 1. Find Output rank = max(Inputs rank)
  for (const auto& input_ddim : input_dims) {
    target_rank = std::max(target_rank, input_ddim.size());
  }

  std::vector<int64_t> target_dims(target_rank, 0);
  // 2. Output dim(axis=x) = max(Inputs dim(axis=x))
  for (int index = 0; index < target_rank; index++) {
    // Loop axes in reverse order,
    // For each axis, take the maximum as target size
    // Fill size = 1 if shape vector exhausts
    int target_dim_size = 1;
    for (const auto& input_ddim : input_dims) {
      // Reversed order
      int axis = static_cast<int>(input_ddim.size()) - index - 1;
      int dim_size = 1;
      if (axis >= 0) {
        dim_size = input_ddim[axis];
      }

      if (target_dim_size != 1 && dim_size != 1 &&
          target_dim_size != dim_size) {
        PADDLE_THROW(errors::InvalidArgument(
            "BroadcastTensorsOp inputs does not satisfy bcast semantics, "
            "please check axis = %d in reverse order",
            index));
      }

      // We performed bcast semantics check at python level
      // So input tensors should all have legal shape
811
      target_dim_size = dim_size == 1 ? target_dim_size : dim_size;
812 813 814 815 816 817 818 819 820 821 822 823
    }
    target_dims[target_rank - index - 1] = target_dim_size;
  }

  // 3. Set Output Dim
  for (size_t i = 0; i < out.size(); i++) {
    out[i]->set_dims(phi::make_ddim(target_dims));
    out[i]->share_lod(*(x[i]));
    out[i]->set_dtype(x[i]->dtype());
  }
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite) {
  PADDLE_ENFORCE_EQ(
      xs.size(),
      outs.size(),
      phi::errors::InvalidArgument(
          "The input(X) and output(Out) should have same size in "
          "Operator(check_finite_and_unscale), size of input(X) is %d "
          "and size of output(Out) is %d.",
          xs.size(),
          outs.size()));
  for (size_t i = 0; i < xs.size(); ++i) {
    outs[i]->set_dims(xs[i]->dims());
    outs[i]->set_dtype(xs[i]->dtype());
  }
  found_infinite->set_dims({1});
  found_infinite->set_dtype(DataType::BOOL);
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config) {
  if (size_of_dtype == -1) {
860
    size_of_dtype = phi::SizeOf(dtype);
861
  }
P
pangengzheng 已提交
862 863
  if (config.is_runtime) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
864
    int64_t numel = 0;
865 866
    for (auto item : input) {
      const auto& dim = item->dims();
867 868
      auto size = phi::product(dim);
      auto len = use_align
P
pangengzheng 已提交
869 870 871
                     ? phi::Alignment(static_cast<size_t>(size) * size_of_dtype,
                                      phi::GPUPlace(),
                                      align_size) /
872 873 874 875 876 877 878 879 880
                           size_of_dtype
                     : static_cast<size_t>(size);
      numel += len;
    }
    if (fused_output) {
      fused_output->set_dims(phi::make_ddim({numel}));
      fused_output->set_dtype(dtype);
      VLOG(4) << "fused_output size:" << phi::make_ddim({numel});
    }
P
pangengzheng 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
#else
    return;
#endif
  } else {
    auto alignment = [](size_t size, size_t align_size) {
      size_t remaining = size % align_size;
      auto aligned_size =
          remaining == 0 ? size : size + (align_size - remaining);
      VLOG(4) << remaining << " " << size << " " << align_size << " "
              << aligned_size;
      return aligned_size;
    };
    VLOG(4) << "align_size: " << align_size;
    if (use_align && align_size > 0) {
      int64_t numel = 0;

897 898
      for (auto item : input) {
        const auto& dim = item->dims();
P
pangengzheng 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912
        auto size = phi::product(dim);
        auto len = use_align
                       ? alignment(static_cast<size_t>(size) * size_of_dtype,
                                   align_size) /
                             size_of_dtype
                       : static_cast<size_t>(size);
        numel += len;
      }
      if (fused_output) {
        fused_output->set_dims(phi::make_ddim({numel}));
        fused_output->set_dtype(dtype);
        VLOG(4) << "fused_output size:" << phi::make_ddim({numel});
      }
    }
913 914 915
  }
}

916 917 918 919 920 921 922 923
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config) {
  if (config.is_runtime) {
    return;
  }
  int64_t numel = 0;
924 925
  for (auto item : input) {
    const auto& dim = item->dims();
926
    auto size = phi::product(dim);
927
    auto len = size * phi::SizeOf(item->dtype());
928 929 930 931 932 933
    numel += len;
  }
  output->set_dims(phi::make_ddim({numel}));
  output->set_dtype(phi::DataType::INT8);
}

934
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
935 936 937 938 939
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config) {
  PADDLE_ENFORCE_GE(x.size(),
                    0UL,
940
                    phi::errors::InvalidArgument(
941 942
                        "The size of input meta vector should be greater"
                        "than 0."));
943 944 945 946 947 948 949 950 951
  if (axis_scalar.FromTensor()) {
    auto out_dims =
        phi::make_ddim(std::vector<int>(x.at(0)->dims().size(), -1));
    out->set_dims(out_dims);
    out->set_dtype(x.at(0)->dtype());
    out->set_layout(x.at(0)->layout());
    out->share_lod(*x.at(0));
    return;
  }
952 953 954

  int axis = axis_scalar.to<int>();
  // 1. calculate axis
955
  int rank = x.at(0)->dims().size();
956
  PADDLE_ENFORCE_EQ(
957
      axis >= -rank && axis < rank,
958
      true,
959
      phi::errors::InvalidArgument(
960 961 962 963 964 965 966 967 968
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis));
  if (axis < 0) {
    axis = axis + rank;
  }

  // 2. calculate out dims
969
  std::vector<phi::DDim> x_dims;
970 971 972
  x_dims.reserve(x.size());
  for (const auto* x_t : x) {
    x_dims.emplace_back(x_t->dims());
973
  }
974 975
  phi::DDim out_dim =
      phi::funcs::ComputeAndCheckShape(config.is_runtime, x_dims, axis);
976

977
  out->set_dims(out_dim);
978 979 980
  out->set_dtype(x.at(0)->dtype());
  out->set_layout(x.at(0)->layout());
  out->share_lod(*x.at(0));
981 982
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
void CudnnLSTMInferMeta(
    const MetaTensor& x,
    const MetaTensor& init_h,
    const MetaTensor& init_c,
    const MetaTensor& w,
    const paddle::optional<std::vector<const MetaTensor*>>& weight_list,
    const MetaTensor& sequence_length,
    float dropout_prob,
    bool is_bidirec,
    int hidden_size,
    int num_layers,
    bool is_test,
    int seed,
    MetaTensor* out,
    MetaTensor* last_h,
    MetaTensor* last_c,
    MetaTensor* reserve,
    MetaTensor* state_out) {
  auto in_dims = x.dims();
  auto init_h_dims = init_h.dims();

  auto init_c_dims = init_c.dims();

  PADDLE_ENFORCE_EQ(in_dims.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The rank of Input in CudnnLSTM  must be 3. But "
                        "received Input's rank is %d.",
                        in_dims.size()));
  PADDLE_ENFORCE_EQ(init_h_dims.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The rank of InitH in CudnnLSTM  must be 3. But "
                        "received InitH's rank is %d.",
                        init_h_dims.size()));

  if (sequence_length) {
    auto seq_dims = sequence_length.dims();
    PADDLE_ENFORCE_EQ(
        in_dims[1],
        seq_dims[0],
        phi::errors::InvalidArgument(
            "The size of SequenceLength has to equal the batch_size. But "
            "received batch_size is %d and the size of SequenceLength is %d.",
            in_dims[1],
            seq_dims[0]));
  }

  PADDLE_ENFORCE_EQ(in_dims[1],
                    init_h_dims[1],
                    phi::errors::InvalidArgument(
                        "The in_dims[1] (Input dims) and init_h_dims[1] (InitH "
                        "dims) should be equal. But "
                        "received in_dims[1] is %d and init_h_dims[1] is %d.",
                        in_dims[1],
                        init_h_dims[1]));

  PADDLE_ENFORCE_EQ(init_c_dims,
                    init_h_dims,
                    phi::errors::InvalidArgument(
                        "The InitC dims and InitH "
                        "dims should be equal. But "
                        "received init_c_dims is %d and init_h_dims is %d.",
                        init_c_dims,
                        init_h_dims));

  auto out_dims = in_dims;
  out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  last_h->set_dims(init_c_dims);
  last_h->set_dtype(x.dtype());
  last_c->set_dims(init_h_dims);
  last_c->set_dtype(x.dtype());

  reserve->set_dtype(phi::DataType::UINT8);
  state_out->set_dtype(phi::DataType::UINT8);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
void DecayedAdagradInferMeta(const MetaTensor& param,
                             const MetaTensor& grad,
                             const MetaTensor& moment,
                             const MetaTensor& learning_rate,
                             float decay,
                             float epsilon,
                             MetaTensor* param_out,
                             MetaTensor* moment_out) {
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_NE(phi::product(lr_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "Maybe the Input variable LearningRate has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function."));
  PADDLE_ENFORCE_EQ(
      phi::product(lr_dims),
      1,
      phi::errors::InvalidArgument("LearningRate should have one element"));
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(param_dims,
                    grad.dims(),
                    phi::errors::InvalidArgument(
                        "Param and Grad input of DecayedAdagradOp should have "
                        "the same dimension."));
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment.dims(),
      phi::errors::InvalidArgument(
          "Param and Moment input of DecayedAdagradOp should have "
          "the same dimension."));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());
  moment_out->set_dims(param_dims);
  moment_out->set_dtype(param.dtype());
}

1101 1102 1103 1104 1105 1106 1107 1108 1109
inline int ConvOutputSize(
    int input_size, int filter_size, int dilation, int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE_GT(
      output_size,
      0,
      phi::errors::InvalidArgument(
          "The output's size is expected to be greater than 0. "
1110
          "But received: output's size is %d. The output's size is computed by "
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
          "((input_size + 2 * padding - (dilation * (filter_size - 1) + 1)) / "
          "stride + 1), where input_size is %d, padding is %d, "
          "filter_size is %d, dilation is %d, stride is %d.",
          output_size,
          input_size,
          padding,
          filter_size,
          dilation,
          stride));

  return output_size;
}

void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
1127
                             const MetaTensor& mask,
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config) {
  auto in_dims = x.dims();
  auto offset_dims = offset.dims();
  auto filter_dims = filter.dims();

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      4,
      phi::errors::InvalidArgument("Conv input should be 4-D tensor, get %u",
                                   in_dims.size()));
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    filter_dims.size(),
                    phi::errors::InvalidArgument(
                        "Conv input dimension and filter dimension should be "
                        "the same. The difference is [%d]: [%d]",
                        in_dims.size(),
                        filter_dims.size()));
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size(),
                    2U,
                    phi::errors::InvalidArgument(
                        "Conv input dimension and strides "
                        "dimension should be consistent. But received input "
                        "dimension:[%d], strides dimension:[%d]",
                        in_dims.size(),
                        strides.size()));
  PADDLE_ENFORCE_EQ(paddings.size(),
                    strides.size(),
                    phi::errors::InvalidArgument(
                        "Conv paddings dimension and Conv strides dimension "
                        "should be the same. The difference is [%d]: [%d]",
                        paddings.size(),
                        strides.size()));

  PADDLE_ENFORCE_EQ(
      in_dims[1],
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input channels should be equal to filter "
          "channels * groups. The difference is [%d]: [%d]",
          in_dims[1],
          filter_dims[1] * groups));
  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output channels should be divided by groups. But "
          "received output channels:[%d], groups:[%d]",
          filter_dims[0],
          groups));
  PADDLE_ENFORCE_EQ(
      filter_dims[0] % deformable_groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output channels should be "
          "divided by deformable groups. The difference is [%d]: [%d]",
          filter_dims[0] % groups,
          0));

  if (in_dims[0] > im2col_step) {
    PADDLE_ENFORCE_EQ(
        in_dims[0] % im2col_step,
        0U,
        phi::errors::InvalidArgument(
            "Input batchsize must be smaller than or divide im2col_step. But "
            "received Input batchsize:[%d], im2col_step:[%d]",
            in_dims[0],
            im2col_step));
  }

  for (size_t i = 0; i < strides.size(); ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0U,
        phi::errors::InvalidArgument("stride %d size incorrect", i));
  }
  for (size_t i = 0; i < dilations.size(); ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i],
        0U,
        phi::errors::InvalidArgument("dilation %d size incorrect", i));
  }

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < strides.size(); ++i) {
    if (!config.is_runtime &&
        (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                            filter_dims[i + 2],
                                            dilations[i],
                                            paddings[i],
                                            strides[i]));
    }
  }

  PADDLE_ENFORCE_EQ(
      output_shape[1] % deformable_groups,
      0U,
      phi::errors::InvalidArgument(
          "output num_filter must divide deformable group size. But received "
          "output num_filter:[%d], deformable group size:[%d]",
          output_shape[1],
          deformable_groups));

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(output_shape[2],
                      offset_dims[2],
                      phi::errors::InvalidArgument(
                          "output height must equal to offset map height. "
                          "The difference is [%d]: [%d]",
                          output_shape[2],
                          offset_dims[2]));
    PADDLE_ENFORCE_EQ(output_shape[3],
                      offset_dims[3],
                      phi::errors::InvalidArgument(
                          "output width must equal to offset map width. The "
                          "difference is [%d]: [%d]",
                          output_shape[3],
                          offset_dims[3]));

    PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]),
                      0U,
                      phi::errors::InvalidArgument(
                          "offset filter must divide deformable group size. "
                          "But received [%d]: [%d]",
                          offset_dims[1],
                          filter_dims[2] * filter_dims[3]));
    PADDLE_ENFORCE_EQ(
        offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
        deformable_groups,
        phi::errors::InvalidArgument(
            "offset filter must divide deformable group size. But received "
            "[%d]: [%d]",
            offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
            deformable_groups));

    if (mask) {
1273
      auto mask_dims = mask.dims();
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
      PADDLE_ENFORCE_EQ(output_shape[2],
                        mask_dims[2],
                        phi::errors::InvalidArgument(
                            "output height must equal to mask map height. The "
                            "difference is [%d] vs [%d]",
                            output_shape[2],
                            mask_dims[2]));
      PADDLE_ENFORCE_EQ(output_shape[3],
                        mask_dims[3],
                        phi::errors::InvalidArgument(
                            "output width must equal to mask map width. The "
                            "difference is [%d] vs [%d]",
                            output_shape[3],
                            mask_dims[3]));

      PADDLE_ENFORCE_EQ(mask_dims[1] % (filter_dims[2] * filter_dims[3]),
                        0U,
                        phi::errors::InvalidArgument(
                            "mask filter must divide deformable group size. "
                            "But received [%d]: [%d]",
                            mask_dims[1],
                            filter_dims[2] * filter_dims[3]));
      PADDLE_ENFORCE_EQ(mask_dims[1] / (filter_dims[2] * filter_dims[3]),
                        deformable_groups,
                        phi::errors::InvalidArgument(
                            "mask filter must divide deformable group size. "
                            "But received [%d]: [%d]",
                            mask_dims[1] / (filter_dims[2] * filter_dims[3]),
                            deformable_groups));
    }
  }

  out->set_dims(phi::make_ddim(output_shape));
  out->set_dtype(x.dtype());
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
void DGCMomentumInferMeta(const MetaTensor& param,
                          const MetaTensor& grad,
                          const MetaTensor& velocity,
                          const MetaTensor& learning_rate,
                          const MetaTensor& master_param,
                          const MetaTensor& current_step_tensor,
                          const MetaTensor& nranks_tensor,
                          float mu,
                          bool use_nesterov,
                          const std::string& regularization_method,
                          float regularization_coeff,
                          bool multi_precision,
                          float rescale_grad,
                          float rampup_begin_step,
                          MetaTensor* param_out,
                          MetaTensor* velocity_out,
                          MetaTensor* master_param_out,
                          MetaTensor* grad_out) {
  auto lr_dims = learning_rate.dims();

  PADDLE_ENFORCE_NE(phi::product(lr_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "Maybe the Input variable LearningRate has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function."));
  PADDLE_ENFORCE_EQ(phi::product(lr_dims),
                    1,
                    phi::errors::InvalidArgument(
                        "Learning_rate should be a scalar. But Received "
                        "LearningRate's dim [%s]",
                        phi::product(lr_dims)));

  auto param_dims = param.dims();
  auto grad_dims = grad.dims();
  auto velocity_dims = velocity.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad_dims,
      phi::errors::InvalidArgument(
          "Param and Grad input of MomentumOp should have the same "
          "dimension. But received Param's dim [%s] and Grad's dim [%s].",
          param_dims,
          grad_dims));
  PADDLE_ENFORCE_EQ(
      param_dims,
      velocity_dims,
      phi::errors::InvalidArgument(
          "Param and Velocity of MomentumOp should have the same "
          "dimension. But received Param's dim [%s] and Velocity [%s].",
          param_dims,
          velocity_dims));

  param_out->set_dims(param_dims);
  velocity_out->set_dims(param_dims);
  if (master_param != nullptr) {
    master_param_out->set_dims(param_dims);
  }
}

Z
zhiboniu 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out) {
  auto hyp_dims = hyps.dims();
  auto ref_dims = refs.dims();

  if (hypslength && refslength) {
    auto hyp_length_dims = hypslength.dims();
    auto ref_length_dims = refslength.dims();

    PADDLE_ENFORCE_EQ(
        hyp_dims.size() == 2 && ref_dims.size() == 2 &&
            hyp_dims[0] == ref_dims[0],
        true,
        errors::InvalidArgument(
            "Input(hyps) and Input(refs) must be 2-D Tensors with "
            "identical first dimension. But received Input(Hyps): "
            "input rank %u, input shape [%s]; received Input(Refs): "
            "input rank %u, input shape [%s]",
            hyp_dims.size(),
            hyp_dims,
            ref_dims.size(),
            ref_dims));
    PADDLE_ENFORCE_EQ(
        hyp_length_dims[0] == ref_length_dims[0] &&
            hyp_length_dims[0] == hyp_dims[0],
        true,
        errors::InvalidArgument(
            "Input(hypslength), Input(refslength) and Input(hyps) "
            "should have identical first dimension. But received "
            "Input(hypslength): input rank %u, input shape [%s]; "
            "received Input(refslength): input rank %u, input shape "
            "[%s]; received Input(hyps): input rank %u, input shape "
            "[%s].",
            hyp_length_dims.size(),
            hyp_length_dims,
            ref_length_dims.size(),
            ref_length_dims,
            hyp_dims.size(),
            hyp_dims));
  } else {
    PADDLE_ENFORCE_EQ(
        hyp_dims.size() == 2 && hyp_dims[1] == 1,
        true,
        errors::InvalidArgument(
            "Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension "
            "equal to 1. But received: input rank %u, input shape [%s].",
            hyp_dims.size(),
            hyp_dims));
    PADDLE_ENFORCE_EQ(
        ref_dims.size() == 2 && ref_dims[1] == 1,
        true,
        errors::InvalidArgument(
            "Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
            "equal to 1. But received: input rank %u, input shape [%s].",
            ref_dims.size(),
            ref_dims));
  }

  out->set_dims(refs.dims());
  out->set_dtype(DataType::FLOAT32);
  sequencenum->set_dims(phi::make_ddim({1}));
  sequencenum->set_dtype(DataType::FLOAT32);
}
1439

H
hong 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
void FusedBatchNormActInferMeta(const MetaTensor& x,
                                const MetaTensor& scale,
                                const MetaTensor& bias,
                                const MetaTensor& mean,
                                const MetaTensor& variance,
                                MetaTensor* y,
                                MetaTensor* mean_out,
                                MetaTensor* variance_out,
                                MetaTensor* saved_mean,
                                MetaTensor* saved_variance,
                                MetaTensor* reserve_space) {
  BatchNormInferMeta(x,
                     mean,
                     variance,
                     scale,
                     bias,
                     false,
                     0.0,
                     0.0,
                     "NHWC",
                     false,
                     false,
                     y,
                     mean_out,
                     variance_out,
                     saved_mean,
                     saved_variance,
                     reserve_space);
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
void FusedBiasActInferMeta(const MetaTensor& x,
                           const MetaTensor& bias,
                           const MetaTensor& dequant_scales,
                           const MetaTensor& shift,
                           const MetaTensor& smooth,
                           const std::string& act_method,
                           const std::string& compute_dtype,
                           float quant_scale,
                           int quant_round_type,
                           float quant_max_bound,
                           float quant_min_bound,
1481 1482
                           MetaTensor* out,
                           MetaConfig config) {
1483 1484 1485 1486 1487 1488 1489 1490
  auto x_dims = x.dims();
  PADDLE_ENFORCE_EQ(x_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The size of Input(x) must be 2: %s", x_dims));
  auto token_num = x_dims[0];
  auto dim = x_dims[1];

FormlessUnit's avatar
FormlessUnit 已提交
1491
  if (config.is_runtime) {
1492 1493 1494 1495
    PADDLE_ENFORCE_GT(
        x_dims[0],
        0,
        phi::errors::InvalidArgument("The size of Attr(rows) must > 0"));
1496

1497 1498 1499 1500 1501
    PADDLE_ENFORCE_GT(
        x_dims[1],
        0,
        phi::errors::InvalidArgument("The size of Attr(cols) must > 0"));
  }
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

  if (act_method == "geglu" || act_method == "swiglu") {
    PADDLE_ENFORCE_EQ(
        dim % 2,
        0,
        phi::errors::InvalidArgument(
            "The seconde dimension of x must be even, but receive %d", dim));
    dim /= 2;
    out->set_dims(phi::make_ddim({token_num, dim}));
  } else if (act_method == "gelu") {
    out->set_dims(phi::make_ddim({token_num, dim}));
  } else {
    PADDLE_THROW(
        errors::InvalidArgument("act_method must be geglu, swiglu or gelu, "
                                "but get act_method (%s)",
                                act_method));
  }

  auto FBADtypeCheck = [](const MetaTensor& check_tensor,
                          const std::string& tensor_name,
                          const std::string& compute_dtype) {
    if (compute_dtype == "bf16") {
      PADDLE_ENFORCE_EQ(
          check_tensor.dtype(),
          phi::DataType::BFLOAT16,
          phi::errors::InvalidArgument(
              "Input(%s) dtype must be the same with Attr(compute_dtype)",
              tensor_name));
    } else if (compute_dtype == "fp16") {
      PADDLE_ENFORCE_EQ(
          check_tensor.dtype(),
          phi::DataType::FLOAT16,
          phi::errors::InvalidArgument(
              "Input(%s) dtype must be the same with Attr(compute_dtype)",
              tensor_name));
    } else if (compute_dtype == "fp32") {
      PADDLE_ENFORCE_EQ(
          check_tensor.dtype(),
          phi::DataType::FLOAT32,
          phi::errors::InvalidArgument(
              "Input(%s) dtype must be the same with Attr(compute_dtype)",
              tensor_name));
    }
  };

  // In the case of quantization enabled, the dtype for computation is
  // determined based on compute_dtype.
  if (x.dtype() == phi::DataType::INT32) {
    PADDLE_ENFORCE_NE(
        compute_dtype,
        "default",
        phi::errors::InvalidArgument(
            "If Input(x) dtype is INT32, Attr(compute_dtype) must be set."));

    if (bias) {
      FBADtypeCheck(bias, "bias", compute_dtype);
    }

    if (quant_scale > 0) {
      out->set_dtype(phi::DataType::INT8);
    } else {
      if (compute_dtype == "bf16") {
        out->set_dtype(phi::DataType::BFLOAT16);
      } else if (compute_dtype == "fp16") {
        out->set_dtype(phi::DataType::FLOAT16);
      } else if (compute_dtype == "fp32") {
        out->set_dtype(phi::DataType::FLOAT32);
      } else {
        PADDLE_THROW(phi::errors::InvalidArgument(
            "In the case of quantization enabled with Input(x) INT32, "
            "Attr(compute_dtype) must be set in (bf16, fp16, fp32), "
            "but get compute_dtype (%s)",
            compute_dtype));
      }
    }
  } else {
    // x.dtype() != phi::DataType::INT32
    if (bias) {
      if (compute_dtype != "default") {
        FBADtypeCheck(bias, "bias", compute_dtype);
        FBADtypeCheck(x, "x", compute_dtype);
      } else {
        PADDLE_ENFORCE_EQ(
            x.dtype(),
            bias.dtype(),
            phi::errors::InvalidArgument("Input(x) and Input(bias) must be the "
                                         "same dtype in this situation"));
      }
    } else {
      // bias not exist
      if (compute_dtype != "default") {
        FBADtypeCheck(x, "x", compute_dtype);
      }
    }
    if (quant_scale > 0) {
      out->set_dtype(phi::DataType::INT8);
    } else {
      out->set_dtype(x.dtype());
    }
  }
  out->set_layout(x.layout());
}
Z
zhiboniu 已提交
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
void FusedLayerNormInferMeta(const MetaTensor& x,
                             const MetaTensor& bias,
                             const MetaTensor& residual,
                             const MetaTensor& norm_weight,
                             const MetaTensor& norm_bias,
                             const float epsilon,
                             const float residual_alpha,
                             const int begin_norm_axis,
                             const float quant_scale,
                             const int quant_round_type,
                             const float quant_max_bound,
                             const float quant_min_bound,
                             MetaTensor* out,
                             MetaTensor* residual_out,
                             MetaTensor* mean,
                             MetaTensor* variance) {
  std::vector<int64_t> x_dims_vec = phi::vectorize(x.dims());
  auto x_dims_size = x_dims_vec.size();

  size_t normalized_dims = 1;
  for (size_t i = begin_norm_axis; i < x_dims_size; ++i) {
    normalized_dims *= x_dims_vec[i];
  }

  int32_t rows = 1;
  for (int i = 0; i < begin_norm_axis; i++) {
    rows *= x.dims()[i];
  }

MarDino's avatar
MarDino 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
  if (norm_weight) {
    PADDLE_ENFORCE_EQ(normalized_dims,
                      norm_weight.dims()[0],
                      phi::errors::InvalidArgument(
                          "The normalized size of Input(X) must equal to be"
                          "the size of Weight, but received"
                          "normalized size of Input(X) is [%d], received size"
                          "of Weight is [%d]",
                          normalized_dims,
                          norm_weight.dims()[0]));
  }
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

  auto out_dims = phi::make_ddim(x_dims_vec);

  out->set_dims(out_dims);
  if (quant_scale <= 0.0f) {
    out->set_dtype(x.dtype());
  } else {
    out->set_dtype(phi::DataType::INT8);
  }
  out->set_layout(x.layout());

  residual_out->set_dims(out_dims);
  residual_out->set_dtype(x.dtype());
  residual_out->set_layout(x.layout());

  mean->set_dims(phi::make_ddim({rows}));
  mean->set_dtype(DataType::FLOAT32);
  mean->set_layout(x.layout());

  variance->set_dims(phi::make_ddim({rows}));
  variance->set_dtype(DataType::FLOAT32);
  variance->set_layout(x.layout());
}

1669 1670 1671 1672 1673
void FusedLinearParamGradAddInferMeta(const MetaTensor& x,
                                      const MetaTensor& dout,
                                      const MetaTensor& dweight,
                                      const MetaTensor& dbias,
                                      bool multi_precision,
Y
Yuang Liu 已提交
1674
                                      bool has_bias,
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
                                      MetaTensor* dweight_out,
                                      MetaTensor* dbias_out) {
  const auto dtype = dout.dtype();
  PADDLE_ENFORCE_EQ(
      x.dtype(),
      dtype,
      phi::errors::InvalidArgument(
          "The data type of Input(x) and Input(dout) must be the same."));

  const auto& x_dims = x.dims();
  const auto& dout_dims = dout.dims();
  int rank = dout_dims.size();
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      rank,
      phi::errors::InvalidArgument(
          "The shape of Input(x) and Input(dout) do not match: %s vs %s.",
          x_dims,
          dout_dims));
  for (int i = 0; i + 1 < x_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(
        x_dims[i],
        dout_dims[i],
        phi::errors::InvalidArgument(
            "The shape of Input(x) and Input(dout) do not match: %s vs %s.",
            x_dims,
            dout_dims));
  }

  const phi::DDim& weight_dims = {x_dims[rank - 1], dout_dims[rank - 1]};
  if (dweight) {
    PADDLE_ENFORCE_EQ(
        weight_dims,
        dweight.dims(),
        phi::errors::InvalidArgument(
            "The shape of input(dweight) does not match the other inputs."));
  }

  const auto mp_dtype =
      (dtype == DataType::FLOAT16 || dtype == DataType::BFLOAT16)
          ? DataType::FLOAT32
          : dtype;

Y
Yuang Liu 已提交
1718
  if (has_bias && dbias_out) {
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
    dbias_out->set_dims({weight_dims[1]});
    dbias_out->set_dtype(multi_precision ? mp_dtype : dtype);
  }

  if (dweight_out) {
    dweight_out->set_dims(weight_dims);
    dweight_out->set_dtype(multi_precision ? mp_dtype : dtype);
  }
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
void FusionGroupInferMeta(const std::vector<const MetaTensor*>& ins,
                          const std::vector<int>& outs_dtype,
                          const std::vector<int>& inputs_dtype,
                          const std::string& func_name,
                          int type,
                          std::vector<MetaTensor*> outs) {
  const size_t num_ins = ins.size();
  const size_t num_outs = outs.size();

  PADDLE_ENFORCE_GE(
      num_ins,
      1UL,
      phi::errors::InvalidArgument(
          "Expected the number of inputs >= 1. Received %d.", num_ins));
  PADDLE_ENFORCE_GE(
      num_outs,
      1UL,
      phi::errors::InvalidArgument(
          "Expected the number of outputs >= 1. Recived %d.", num_outs));

  PADDLE_ENFORCE_EQ(type,
                    0UL,
                    phi::errors::InvalidArgument(
                        "Only support fusion of elementwise operations."));

  std::vector<phi::DDim> x_dims;
  for (size_t i = 0; i < num_ins; ++i) {
    x_dims.push_back(ins[i]->dims());
  }

  if (type == 0) {
    for (size_t i = 1; i < num_ins; ++i) {
      PADDLE_ENFORCE_EQ(x_dims[0],
                        x_dims[i],
                        phi::errors::InvalidArgument(
                            "All the inputs' dims is expected to be the same. "
                            "But received [%s] (name: %s) vs [%s] (name: %s).",
                            x_dims[0],
                            ins[0],
                            x_dims[i],
                            ins[i]));
    }
    for (size_t j = 0; j < num_outs; ++j) {
      outs[j]->set_dims(x_dims[0]);
    }
  }

  // Only lod of Inputs[0] would be shared with Outs.
  for (size_t j = 0; j < num_outs; ++j) {
    outs[j]->share_lod(*ins[0]);
  }

  for (size_t j = 0; j < num_outs; ++j) {
    if (outs_dtype[j] == phi::TransToProtoVarType(phi::DataType::FLOAT16)) {
      outs[j]->set_dtype(phi::DataType::FLOAT16);
    } else if (outs_dtype[j] ==
               phi::TransToProtoVarType(phi::DataType::FLOAT32)) {
      outs[j]->set_dtype(phi::DataType::FLOAT32);
    } else if (outs_dtype[j] ==
               phi::TransToProtoVarType(phi::DataType::FLOAT64)) {
      outs[j]->set_dtype(phi::DataType::FLOAT64);
    }
  }
}

Z
zhiboniu 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num) {
  rpn_rois->set_dims(phi::make_ddim({-1, 4}));
  rpn_roi_probs->set_dims(phi::make_ddim({-1, 1}));
}

1812 1813 1814 1815 1816 1817 1818 1819
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes) {
Z
zhangyuqin1998 已提交
1820 1821
  bool flag_buffer_hashtable =
      hashtable_value.initialized() && hashtable_index.initialized();
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
  auto GraphReindexShapeCheck = [](const phi::DDim& dims,
                                   std::string tensor_name) {
    if (dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          dims[1],
          1,
          phi::errors::InvalidArgument("The last dim of %s should be 1 when it "
                                       "is 2D, but we get %d",
                                       tensor_name,
                                       dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          dims.size(),
          1,
          phi::errors::InvalidArgument(
              "The %s should be 1D, when it is not 2D, but we get %d",
              tensor_name,
              dims.size()));
    }
  };

  GraphReindexShapeCheck(x.dims(), "X");
  GraphReindexShapeCheck(neighbors.dims(), "Neighbors");
  GraphReindexShapeCheck(count.dims(), "Count");
  if (flag_buffer_hashtable) {
    GraphReindexShapeCheck(hashtable_value.dims(), "HashTable_Value");
    GraphReindexShapeCheck(hashtable_index.dims(), "HashTable_Index");
  }

  reindex_src->set_dims({-1});
  reindex_src->set_dtype(neighbors.dtype());
  reindex_dst->set_dims({-1});
  reindex_dst->set_dtype(neighbors.dtype());
  out_nodes->set_dims({-1});
  out_nodes->set_dtype(x.dtype());
}

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids) {
  // GSN: GraphSampleNeighbors
  auto GSNShapeCheck = [](const phi::DDim& dims, std::string tensor_name) {
    if (dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          dims[1],
          1,
          phi::errors::InvalidArgument("The last dim of %s should be 1 when it "
                                       "is 2D, but we get %d",
                                       tensor_name,
                                       dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          dims.size(),
          1,
          phi::errors::InvalidArgument(
              "The %s should be 1D, when it is not 2D, but we get %d",
              tensor_name,
              dims.size()));
    }
  };

  GSNShapeCheck(row.dims(), "Row");
  GSNShapeCheck(col_ptr.dims(), "Col_Ptr");
  GSNShapeCheck(x.dims(), "X");
  if (return_eids) {
    GSNShapeCheck(eids.dims(), "Eids");
    out_eids->set_dims({-1});
    out_eids->set_dtype(row.dtype());
  }
  if (flag_perm_buffer) {
    GSNShapeCheck(perm_buffer.dims(), "Perm_Buffer");
  }

  out->set_dims({-1});
  out->set_dtype(row.dtype());
  out_count->set_dims({-1});
  out_count->set_dtype(DataType::INT32);
}

1909 1910
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
1911 1912
                           const MetaTensor& w,
                           const MetaTensor& bias,
1913 1914 1915 1916 1917 1918 1919
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out) {
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
  const int64_t input_dims = x.dims()[0];
  const int64_t label_dims = label.dims()[0];
  PADDLE_ENFORCE_EQ(input_dims,
                    label_dims,
                    phi::errors::InvalidArgument(
                        "The first dimension of "
                        "input and label is expected to be the same. "
                        "But received input's first dimension is %d; "
                        "label's first dimension is %d.",
                        input_dims,
                        label_dims));

  std::vector<int64_t> output_shape({input_dims, 1});
  out->set_dims(phi::make_ddim(output_shape));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

1938 1939
static void Interpolate1DInferShapeCheck(
    const MetaTensor& x,
1940 1941 1942
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    const std::string& data_layout_str,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config) {
  auto dim_x = x.dims();

  PADDLE_ENFORCE_EQ("linear",
                    interp_method,
                    phi::errors::InvalidArgument(
                        "Interpolation method can only be \"linear\" when"
                        "Input(X) dimension is 3, but got method = %s .",
                        interp_method));
1961
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
1962 1963 1964 1965 1966 1967 1968 1969 1970
  for (int i = 0; i < dim_x.size(); ++i) {
    PADDLE_ENFORCE_NE(
        dim_x[i],
        0,
        phi::errors::InvalidArgument("The shape of input(x) should be larged "
                                     "than 0, bug received shape[%d] is %d ",
                                     i,
                                     dim_x[i]));
  }
1971
  if (size_tensor && !size_tensor->empty()) {
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    // top prority size
    auto inputs_name = size_tensor.get();
    PADDLE_ENFORCE_EQ(
        inputs_name.size(),
        1,
        phi::errors::InvalidArgument(
            "Input(SizeTensor)'size of Op(interpolate) must be 1. "
            "Attr(out_shape)'s length must be 1 for 3-D input tensor, but got "
            "size = %d .",
            inputs_name.size()));
    phi::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_w};
    } else {
      dim_out = {dim_x[0], out_w, dim_x[2]};
    }
    output->set_dims(dim_out);
    output->set_dtype(x.dtype());

    return;
  }

  int out_w_tmp;
  if (scale_tensor) {
1996
    auto scale_tensor_dim = scale_tensor.dims();
1997
    PADDLE_ENFORCE_EQ(
1998 1999
        scale_tensor_dim.size() == 1 || scale_tensor_dim.size() == 0,
        true,
2000
        phi::errors::InvalidArgument(
2001
            "Scale's dimension size must be 1 or 0, but got dimension = %d .",
2002
            scale_tensor_dim.size()));
2003 2004 2005 2006 2007 2008 2009
    if (scale_tensor_dim.size() == 1) {
      PADDLE_ENFORCE_EQ(scale_tensor_dim[0],
                        1,
                        phi::errors::InvalidArgument(
                            "Scale's shape must be 1, but got shape = %d .",
                            scale_tensor_dim[0]));
    }
2010 2011
    out_w_tmp = -1;
  } else {
2012
    if (!scale.empty()) {
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
      float scale_w = -1;
      scale_w = scale[0];
      PADDLE_ENFORCE_EQ(
          scale_w > 0,
          true,
          phi::errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      if (scale_w > 0.) {
        // round down
        out_w_tmp = (data_layout == DataLayout::kNCHW
                         ? static_cast<int>(dim_x[2] * scale_w)
                         : static_cast<int>(dim_x[1] * scale_w));
        // protect when input shape is -1
        out_w_tmp = out_w_tmp > 0 ? out_w_tmp : -1;
      }
    } else {
      out_w_tmp = out_w;
    }
  }

  if (out_size && config.is_runtime) {
2036
    auto out_size_dim = out_size.dims();
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    PADDLE_ENFORCE_EQ(
        out_size_dim.size(),
        1,
        phi::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got dimention = %d .",
            out_size_dim.size()));
    PADDLE_ENFORCE_EQ(
        out_size_dim[0],
        1,
        phi::errors::InvalidArgument(
            "OutSize's 0-th dimension's value must be 1, but got value = %d .",
            out_size_dim[0]));

    // dims will be seted in kernel
    output->set_dtype(x.dtype());
    output->share_lod(x);
    return;
  }

  phi::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_w_tmp};
  } else {
    dim_out = {dim_x[0], out_w_tmp, dim_x[2]};
  }
  output->set_dims(dim_out);
  output->set_dtype(x.dtype());
}

static void Interpolate2DInferShapeCheck(
    const MetaTensor& x,
2068 2069 2070
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
    const std::string& data_layout_str,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config) {
  auto dim_x = x.dims();

2083 2084 2085 2086
  PADDLE_ENFORCE_EQ(
      ("bilinear" == interp_method || "nearest" == interp_method ||
       "bicubic" == interp_method),
      true,
2087 2088 2089 2090
      phi::errors::InvalidArgument(
          "Interpolation method can only be \"bilinear\" or \"nearest\" when "
          "Input(X) dimension is 4, but got method = %s.",
          interp_method));
2091
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

  for (int i = 0; i < dim_x.size(); ++i) {
    PADDLE_ENFORCE_NE(
        dim_x[i],
        0,
        phi::errors::InvalidArgument("The shape of input(x) should be larged "
                                     "than 0, bug received shape[%d] is %d ",
                                     i,
                                     dim_x[i]));
  }

2103
  if (size_tensor && !size_tensor->empty()) {
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
    // top prority size
    auto inputs_name = size_tensor.get();
    PADDLE_ENFORCE_EQ(
        inputs_name.size(),
        2,
        phi::errors::InvalidArgument(
            "Input(SizeTensor)'size of Op(interpolate) must be 2. "
            "Attr(out_shape)'s length must be 2 for 4-D input "
            "tensor, but got size = %d .",
            inputs_name.size()));
    phi::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
    }
    output->set_dims(dim_out);
    output->set_dtype(x.dtype());

    return;
  }

  int out_h_tmp, out_w_tmp;
2127

2128
  if (scale_tensor) {
2129
    auto scale_tensor_dim = scale_tensor.dims();
2130
    PADDLE_ENFORCE_EQ(
2131 2132
        scale_tensor_dim.size() == 1 || scale_tensor_dim.size() == 0,
        true,
2133
        phi::errors::InvalidArgument(
2134
            "Scale's dimension size must be 1 or 0, but got dimension = %d .",
2135
            scale_tensor_dim.size()));
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

    if (scale_tensor_dim.size() == 1) {
      PADDLE_ENFORCE_EQ(
          scale_tensor_dim[0] == 2 || scale_tensor_dim[0] == 1,
          true,
          phi::errors::InvalidArgument(
              "Scale's shape must be 2 or 1, but got shape = %d .",
              scale_tensor_dim[0]));
    }

2146 2147 2148
    out_h_tmp = -1;
    out_w_tmp = -1;
  } else {
2149
    if (!scale.empty()) {
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
      float scale_h = -1;
      float scale_w = -1;
      scale_h = scale[0];
      scale_w = scale[1];
      PADDLE_ENFORCE_EQ(
          scale_w > 0,
          true,
          phi::errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      PADDLE_ENFORCE_EQ(
          scale_h > 0,
          true,
          phi::errors::InvalidArgument(
              "The scale_h in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_h));
      if (scale_h > 0. && scale_w > 0.) {
        // round down
        out_h_tmp = (data_layout == DataLayout::kNCHW
                         ? static_cast<int>(dim_x[2] * scale_h)
                         : static_cast<int>(dim_x[1] * scale_h));
        out_w_tmp = (data_layout == DataLayout::kNCHW
                         ? static_cast<int>(dim_x[3] * scale_w)
                         : static_cast<int>(dim_x[2] * scale_w));
        // protect when input shape is -1
        out_h_tmp = out_h_tmp > 0 ? out_h_tmp : -1;
        out_w_tmp = out_w_tmp > 0 ? out_w_tmp : -1;
      }
    } else {
      out_h_tmp = out_h;
      out_w_tmp = out_w;
    }
  }

  if (out_size && config.is_runtime) {
2187
    auto out_size_dim = out_size.dims();
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    PADDLE_ENFORCE_EQ(
        out_size_dim.size(),
        1,
        phi::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got dimension = %d .",
            out_size_dim.size()));
    PADDLE_ENFORCE_EQ(
        out_size_dim[0],
        2,
        phi::errors::InvalidArgument(
            "OutSize's dim[0] must be 2, but got dimention = %d .",
            out_size_dim[0]));
    // dims will be seted in kernel
    output->set_dtype(x.dtype());
    output->share_lod(x);
    return;
  }

  phi::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_h_tmp, out_w_tmp};
  } else {
    dim_out = {dim_x[0], out_h_tmp, out_w_tmp, dim_x[3]};
  }

  output->set_dims(dim_out);
  output->set_dtype(x.dtype());
}

static void Interpolate3DInferShapeCheck(
    const MetaTensor& x,
2219 2220 2221
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
    const std::string& data_layout_str,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config) {
  auto dim_x = x.dims();

2234 2235 2236 2237 2238 2239 2240 2241
  PADDLE_ENFORCE_EQ(
      ("nearest" == interp_method || "trilinear" == interp_method),
      true,
      phi::errors::InvalidArgument(
          "Interpolation method can only be \"trilinear\" or "
          "\"nearest\" when Input(X) "
          "dimension is 5, but got method = %s .",
          interp_method));
2242
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

  for (int i = 0; i < dim_x.size(); ++i) {
    PADDLE_ENFORCE_NE(
        dim_x[i],
        0,
        phi::errors::InvalidArgument("The shape of input(x) should be larged "
                                     "than 0, bug received shape[%d] is %d ",
                                     i,
                                     dim_x[i]));
  }

2254
  if (size_tensor && !size_tensor->empty()) {
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    // top prority size
    auto inputs_name = size_tensor.get();
    PADDLE_ENFORCE_EQ(
        inputs_name.size(),
        3,
        phi::errors::InvalidArgument(
            "Input(SizeTensor)'s size of Op(interpolate) must be 3. "
            "Attr(out_shape)'s length must be 3 for 5-D input "
            "tensor, but got size = %d .",
            inputs_name.size()));
    phi::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
    }
    output->set_dims(dim_out);
    output->set_dtype(x.dtype());
    return;
  }

  int out_d_tmp, out_h_tmp, out_w_tmp;
  if (scale_tensor) {
2278
    auto scale_tensor_dim = scale_tensor.dims();
2279
    PADDLE_ENFORCE_EQ(
2280 2281
        scale_tensor_dim.size() == 1 || scale_tensor_dim.size() == 0,
        true,
2282
        phi::errors::InvalidArgument(
2283
            "Scale's dimension size must be 1 or 0, but got size = %d .",
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
            scale_tensor_dim.size()));
    PADDLE_ENFORCE_EQ(scale_tensor_dim[0] == 3 || scale_tensor_dim[0] == 1,
                      true,
                      phi::errors::InvalidArgument(
                          "Scale's shape must be 3 or 1, but got shape = %d .",
                          scale_tensor_dim[0]));
    out_d_tmp = -1;
    out_h_tmp = -1;
    out_w_tmp = -1;
  } else {
2294
    if (!scale.empty()) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
      float scale_d = -1;
      float scale_h = -1;
      float scale_w = -1;
      scale_d = scale[0];
      scale_h = scale[1];
      scale_w = scale[2];
      PADDLE_ENFORCE_EQ(
          scale_w > 0,
          true,
          phi::errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      PADDLE_ENFORCE_EQ(
          scale_h > 0,
          true,
          phi::errors::InvalidArgument(
              "The scale_h in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_h));
      PADDLE_ENFORCE_EQ(
          scale_d > 0,
          true,
          phi::errors::InvalidArgument(
              "The scale_d in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_d));
      if (scale_d > 0. && scale_h > 0. && scale_w > 0.) {
        // round down
        out_d_tmp = (data_layout == DataLayout::kNCHW
                         ? static_cast<int>(dim_x[2] * scale_d)
                         : static_cast<int>(dim_x[1] * scale_d));
        out_h_tmp = (data_layout == DataLayout::kNCHW
                         ? static_cast<int>(dim_x[3] * scale_h)
                         : static_cast<int>(dim_x[2] * scale_h));
        out_w_tmp = (data_layout == DataLayout::kNCHW
                         ? static_cast<int>(dim_x[4] * scale_w)
                         : static_cast<int>(dim_x[3] * scale_w));
        // protect when input shape is -1
        out_d_tmp = out_d_tmp > 0 ? out_d_tmp : -1;
        out_h_tmp = out_h_tmp > 0 ? out_h_tmp : -1;
        out_w_tmp = out_w_tmp > 0 ? out_w_tmp : -1;
      }
    } else {
      out_d_tmp = out_d;
      out_h_tmp = out_h;
      out_w_tmp = out_w;
    }
  }

  if (out_size && config.is_runtime) {
2346
    auto out_size_dim = out_size.dims();
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
    PADDLE_ENFORCE_EQ(
        out_size_dim.size(),
        1,
        phi::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got size is %d.",
            out_size_dim.size()));
    PADDLE_ENFORCE_EQ(out_size_dim[0],
                      3,
                      phi::errors::InvalidArgument(
                          "OutSize's dim[0] must be 3, but got size is %d.",
                          out_size_dim[0]));
    // dims will be seted in kernel
    output->set_dtype(x.dtype());
    output->share_lod(x);
    return;
  }

  phi::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_d_tmp, out_h_tmp, out_w_tmp};
  } else {
    dim_out = {dim_x[0], out_d_tmp, out_h_tmp, out_w_tmp, dim_x[4]};
  }
  output->set_dims(dim_out);
  output->set_dtype(x.dtype());
}

void InterpolateInferMeta(
    const MetaTensor& x,
2376 2377 2378
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
    const std::string& data_layout_str,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config) {
  auto dim_x = x.dims();  // NCHW format
2390 2391 2392
  PADDLE_ENFORCE_EQ(
      (dim_x.size() == 3 || dim_x.size() == 4 || dim_x.size() == 5),
      true,
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
      phi::errors::Unimplemented(
          "Input(X) dimension must be 3, 4 or 5, but got dimension = %d .",
          dim_x.size()));
  if (dim_x.size() == 3) {
    // shape check for 1D interpolate for input tensor shape NCHW
    Interpolate1DInferShapeCheck(x,
                                 out_size,
                                 size_tensor,
                                 scale_tensor,
                                 data_layout_str,
                                 out_d,
                                 out_h,
                                 out_w,
                                 scale,
                                 interp_method,
                                 align_corners,
                                 align_mode,
                                 output,
                                 config);
  } else if (dim_x.size() == 4) {
    // shape check for 2D interpolate for input tensor shape NCHW
    Interpolate2DInferShapeCheck(x,
                                 out_size,
                                 size_tensor,
                                 scale_tensor,
                                 data_layout_str,
                                 out_d,
                                 out_h,
                                 out_w,
                                 scale,
                                 interp_method,
                                 align_corners,
                                 align_mode,
                                 output,
                                 config);
  } else {  // dim_x.size() == 5
    // shape check for 3D interpolate for input tensor shape NCDHW
    Interpolate3DInferShapeCheck(x,
                                 out_size,
                                 size_tensor,
                                 scale_tensor,
                                 data_layout_str,
                                 out_d,
                                 out_h,
                                 out_w,
                                 scale,
                                 interp_method,
                                 align_corners,
                                 align_mode,
                                 output,
                                 config);
  }
}

傅剑寒 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
void IndexPutInferMeta(const MetaTensor& x,
                       const std::vector<const MetaTensor*>& indices,
                       const MetaTensor& value,
                       bool accumulate,
                       MetaTensor* out) {
  auto in_dims = x.dims();
  PADDLE_ENFORCE_LT(
      in_dims.size(),
      7,
      phi::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.",
          in_dims.size()));
  out->share_meta(x);
}

T
Thomas Young 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
2475
                   bool always_adapt,
T
Thomas Young 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs) {
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_NE(
      phi::product(lr_dims),
      0,
      phi::errors::InvalidArgument(
          "The number of LearningRate shall not be 0, but received %d. Maybe "
          "the Input variable LearningRate has not "
          "been initialized. You may need to confirm "
          "if you put exe.run(startup_program) "
          "after optimizer.minimize function.",
          phi::product(lr_dims)));
  PADDLE_ENFORCE_EQ(
      phi::product(lr_dims),
      1,
      phi::errors::InvalidArgument(
          "Learning rate should have 1 dimension, but received %d.",
          phi::product(lr_dims)));
  auto beta1_pow_dims = beta1_pow.dims();
  PADDLE_ENFORCE_GE(phi::product(beta1_pow_dims),
                    1,
                    phi::errors::InvalidArgument(
                        "The size of Beta1 power accumulator should be "
                        "greater than 0, but received %d.",
                        phi::product(beta1_pow_dims)));
  auto beta2_pow_dims = beta2_pow.dims();
  PADDLE_ENFORCE_GE(phi::product(beta2_pow_dims),
                    1,
                    phi::errors::InvalidArgument(
                        "The size of Beta2 power accumulator should be "
                        "greater than 0, but received %d.",
                        phi::product(beta2_pow_dims)));

  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment1.dims(),
      phi::errors::InvalidArgument(
          "Param and Moment1 input of LambOp should have same dimension. But "
          "received Param dims: [%s], Moment1 dims: [%s].",
          param_dims,
          moment1.dims()));
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment2.dims(),
      errors::InvalidArgument(
          "Param and Moment2 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment2 dims: [%s].",
          param_dims,
          moment2.dims()));

  PADDLE_ENFORCE_NOT_NULL(
      param_out, errors::NotFound("The output param_out can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      moment1_out,
      errors::NotFound("The output moment1_out can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      moment2_out,
      errors::NotFound("The output moment2_out can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      beta1_pow_out,
      errors::NotFound("The output beta1_pow_out can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      beta2_pow_out,
      errors::NotFound("The output beta2_pow_out can not be nullptr"));
  param_out->set_dims(param_dims);
2548 2549 2550 2551 2552

  phi::DataType dtype = param.dtype();
  if (multi_precision && param.dtype() == phi::DataType::FLOAT16) {
    dtype = phi::DataType::FLOAT32;
  }
T
Thomas Young 已提交
2553 2554

  moment1_out->set_dims(param_dims);
2555
  moment1_out->set_dtype(dtype);
T
Thomas Young 已提交
2556
  moment2_out->set_dims(param_dims);
2557
  moment2_out->set_dtype(dtype);
T
Thomas Young 已提交
2558 2559

  beta1_pow_out->set_dims(beta1_pow_dims);
2560
  beta1_pow_out->set_dtype(dtype);
T
Thomas Young 已提交
2561
  beta2_pow_out->set_dims(beta2_pow_dims);
2562 2563 2564 2565 2566
  beta2_pow_out->set_dtype(dtype);

  if (master_param_outs) {
    master_param_outs->set_dtype(dtype);
  }
T
Thomas Young 已提交
2567 2568
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
void LLMInt8LinearInferMeta(const MetaTensor& x,
                            const MetaTensor& weight,
                            const MetaTensor& bias,
                            const MetaTensor& weight_scale,
                            const float threshold,
                            MetaTensor* out) {
  auto x_dims = x.dims();
  auto w_dims = weight.dims();
  PADDLE_ENFORCE_EQ(
      w_dims.size(),
      2UL,
      errors::InvalidArgument("The input(weight) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      x_dims[x_dims.size() - 1],
      w_dims[1],
      errors::InvalidArgument(
          "Input(X) dim[-1] and Input(Weight) dim[1] should be euqal."
          "But received Input(X) dim[-1](%s) != Input(Weight) dim[1](%s)",
          x_dims[x_dims.size() - 1],
          w_dims[1]));
  PADDLE_ENFORCE_EQ(
      w_dims[0] % 16,
      0,
      phi::errors::InvalidArgument(
          "The first dimension of input must be divisible by 16, but got[%d]",
          w_dims[0]));
  PADDLE_ENFORCE_EQ(
      w_dims[1] % 16,
      0,
      phi::errors::InvalidArgument(
          "The second dimension of input must be divisible by 16, but got[%d]",
          w_dims[1]));
  PADDLE_ENFORCE_EQ(
      weight_scale.dims()[0],
      w_dims[0],
      errors::InvalidArgument(
          "Input(weight_scale) dim[0] and Input(Weight) dim[0] should be euqal."
          "But received Input(weight_scale) dim[0](%s) != Input(Weight) "
          "dim[0](%s)",
          weight_scale.dims()[0],
          w_dims[0]));
  auto out_dims = x_dims;
  out_dims[out_dims.size() - 1] = w_dims[0];
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

2616 2617 2618 2619
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
2620
                       DataType dtype,
2621 2622 2623
                       MetaTensor* out) {
  auto s_dims = start.dims();
  PADDLE_ENFORCE_EQ(
2624 2625 2626 2627 2628
      phi::product(s_dims),
      1,
      phi::errors::InvalidArgument("The size of Input(Start) must be 1,"
                                   "but received input size is %s.",
                                   phi::product(s_dims)));
2629 2630
  auto e_dims = stop.dims();
  PADDLE_ENFORCE_EQ(
2631
      phi::product(e_dims),
2632
      true,
2633 2634 2635
      phi::errors::InvalidArgument("The size of Input(Stop) must be 1,"
                                   "but received input size is %s.",
                                   phi::product(e_dims)));
2636 2637
  auto num_dims = number.dims();
  PADDLE_ENFORCE_EQ(
2638
      phi::product(num_dims),
2639
      true,
2640 2641 2642
      phi::errors::InvalidArgument("The size of Input(Num) must be 1,"
                                   "but received input size is %s.",
                                   phi::product(num_dims)));
2643
  auto b_dims = base.dims();
2644 2645 2646 2647 2648 2649
  PADDLE_ENFORCE_EQ(phi::product(b_dims),
                    true,
                    phi::errors::InvalidArgument(
                        "The size of Input(Base) must be 1,"
                        "but received input size is phi::product(b_dims).",
                        phi::product(b_dims)));
2650
  out->set_dims(phi::make_ddim({-1}));
C
Chen Weihang 已提交
2651
  out->set_dtype(dtype);
2652 2653
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out) {}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out) {}

Z
ZhangDY-6483 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
void MemoryEfficientAttentionInferMeta(const MetaTensor& query,
                                       const MetaTensor& key,
                                       const MetaTensor& value,
                                       const MetaTensor& bias,
                                       const MetaTensor& cu_seqlens_q,
                                       const MetaTensor& cu_seqlens_k,
                                       const MetaTensor& causal_diagonal,
                                       const MetaTensor& seqlen_k,
                                       const Scalar& max_seqlen_q,
                                       const Scalar& max_seqlen_k,
                                       const bool causal,
                                       const double dropout_p,
                                       const float scale,
                                       const bool is_test,
                                       MetaTensor* output,
                                       MetaTensor* logsumexp,
                                       MetaTensor* seed_and_offset) {
  PADDLE_ENFORCE_EQ(
      query.dims().size(),
      4,
      phi::errors::InvalidArgument("Query should be a 4-D tensor"
                                   "But received Query dimension(%s)",
                                   query.dims().size()));
  PADDLE_ENFORCE_EQ(
      key.dims().size(),
      4,
      phi::errors::InvalidArgument("Key should be a 4-D tensor"
                                   "But received Key dimension(%s)",
                                   key.dims().size()));
  PADDLE_ENFORCE_EQ(
      value.dims().size(),
      4,
      phi::errors::InvalidArgument("Value should be a 4-D tensor"
                                   "But received Value dimension(%s)",
                                   value.dims().size()));

  const int64_t query_batch_size = query.dims()[0];
  const int64_t query_seq_length = query.dims()[1];
  const int64_t query_num_head = query.dims()[2];
  const int64_t query_head_size = query.dims()[3];

  const int64_t key_batch_size = key.dims()[0];
  const int64_t key_seq_length = key.dims()[1];
  const int64_t key_num_head = key.dims()[2];
  const int64_t key_head_size = key.dims()[3];

  const int64_t value_batch_size = value.dims()[0];
  const int64_t value_seq_length = value.dims()[1];
  const int64_t value_num_head = value.dims()[2];
  const int64_t value_head_size = value.dims()[3];

  PADDLE_ENFORCE_EQ(((query_batch_size == key_batch_size) &&
                     (key_batch_size == value_batch_size)),
                    true,
                    phi::errors::InvalidArgument(
                        "The batchsize of Query, Key, Value should be equal."));

  PADDLE_ENFORCE_EQ(
      ((query_num_head == key_num_head) && (key_num_head == value_num_head)),
      true,
      phi::errors::InvalidArgument(
          "The head number of Query, Key, Value should be equal."));

  PADDLE_ENFORCE_EQ(query_head_size == key_head_size,
                    true,
                    phi::errors::InvalidArgument(
                        "The head size of Query, Key should be equal."));

  PADDLE_ENFORCE_EQ(key_seq_length == value_seq_length,
                    true,
                    phi::errors::InvalidArgument(
                        "The seq length of Key, Value should be equal."));
  std::vector<int64_t> out_dims(
      {query_batch_size, query_seq_length, query_num_head, value_head_size});
  std::vector<int64_t> logsumexp_dims({query_num_head, query_batch_size});
  std::vector<int64_t> seed_and_offset_dims({2});

  output->set_dims(phi::make_ddim(out_dims));
  output->share_lod(query);
  output->set_dtype(query.dtype());
  output->set_layout(query.layout());

  logsumexp->set_dims(phi::make_ddim(logsumexp_dims));
  logsumexp->set_dtype(phi::DataType::FLOAT32);

  seed_and_offset->set_dims(phi::make_ddim(seed_and_offset_dims));
  seed_and_offset->set_dtype(phi::DataType::INT64);
}

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
void VariableLengthMemoryEfficientAttentionInferMeta(
    const MetaTensor& query,
    const MetaTensor& key,
    const MetaTensor& value,
    const MetaTensor& seq_lens,
    const MetaTensor& kv_seq_lens,
    const MetaTensor& mask,
    float scale,
    bool causal,
    MetaTensor* out) {
  PADDLE_ENFORCE_EQ(
      query.dims().size(),
      4,
      phi::errors::InvalidArgument("Query should be a 4-D tensor"
                                   "But received Query dimension(%s)",
                                   query.dims().size()));
  PADDLE_ENFORCE_EQ(
      key.dims().size(),
      4,
      phi::errors::InvalidArgument("Key should be a 4-D tensor"
                                   "But received Key dimension(%s)",
                                   key.dims().size()));
  PADDLE_ENFORCE_EQ(
      value.dims().size(),
      4,
      phi::errors::InvalidArgument("Value should be a 4-D tensor"
                                   "But received Value dimension(%s)",
                                   value.dims().size()));

  const int64_t query_batch_size = query.dims()[0];
  const int64_t query_num_head = query.dims()[1];
  const int64_t query_seq_length = query.dims()[2];
  const int64_t query_head_size = query.dims()[3];

  const int64_t key_batch_size = key.dims()[0];
  const int64_t key_num_head = key.dims()[1];
  const int64_t key_seq_length = key.dims()[2];
  const int64_t key_head_size = key.dims()[3];

  const int64_t value_batch_size = value.dims()[0];
  const int64_t value_num_head = value.dims()[1];
  const int64_t value_seq_length = value.dims()[2];
  const int64_t value_head_size = value.dims()[3];

  PADDLE_ENFORCE_EQ(
      ((query_batch_size == key_batch_size) &&
       (key_batch_size == value_batch_size)),
      true,
      phi::errors::InvalidArgument(
          "The batch size of Query, Key, Value should be equal."));

  PADDLE_ENFORCE_EQ(
      ((query_num_head == key_num_head) && (key_num_head == value_num_head)),
      true,
      phi::errors::InvalidArgument(
          "The head number of Query, Key, Value should be equal."));

  PADDLE_ENFORCE_EQ(query_head_size == key_head_size,
                    true,
                    phi::errors::InvalidArgument(
                        "The head size of Query, Key should be equal."));

  PADDLE_ENFORCE_EQ(key_seq_length == value_seq_length,
                    true,
                    phi::errors::InvalidArgument(
                        "The seq length of Key, Value should be equal."));

  std::vector<int64_t> out_dims(
      {query_batch_size, query_num_head, query_seq_length, value_head_size});

  out->set_dims(phi::make_ddim(out_dims));
  out->set_dtype(query.dtype());
  out->set_layout(query.layout());
}

2855
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
2856 2857 2858 2859 2860 2861
                       std::vector<MetaTensor*> outputs) {
  const size_t inputs_num = inputs.size();

  auto out_shape = std::vector<int>(inputs_num);

  for (size_t i = 0; i < inputs.size(); i++) {
2862 2863 2864 2865 2866
    if (inputs[i]->dims().size() == 0) {
      out_shape[i] = 1;
    } else {
      out_shape[i] = inputs[i]->dims()[0];
    }
H
hong 已提交
2867 2868
  }
  auto out_dims = phi::make_ddim(std::vector<int>(out_shape));
2869 2870 2871
  for (auto& output : outputs) {
    output->set_dims(out_dims);
    output->set_dtype(inputs[0]->dtype());
H
hong 已提交
2872 2873 2874
  }
}

2875 2876 2877 2878
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
2879
                       const MetaTensor& master_param,
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out) {
  PADDLE_ENFORCE_NE(
      param_out,
      nullptr,
      errors::NotFound("Output(ParamOut) of Momentum should not be null."));
  PADDLE_ENFORCE_NE(
      velocity_out,
      nullptr,
      errors::NotFound("Output(VelocityOut) of Momentum should not be null."));

  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_NE(
      phi::product(lr_dims),
      0,
      errors::InvalidArgument("Maybe the Input variable LearningRate has not "
                              "been initialized. You may need to confirm "
                              "if you put exe.run(startup_program) "
                              "after optimizer.minimize function."));
  PADDLE_ENFORCE_EQ(
      phi::product(lr_dims),
      1,
      errors::InvalidArgument("Learning_rate should be a scalar. But Received "
                              "LearningRate's dim [%s]",
                              phi::product(lr_dims)));

  auto param_dim = param.dims();
  param_out->set_dims(param_dim);
P
PuQing 已提交
2915 2916 2917 2918
  auto MPType = (param.dtype() == phi::DataType::FLOAT16 ||
                 param.dtype() == phi::DataType::BFLOAT16)
                    ? phi::DataType::FLOAT32
                    : param.dtype();
2919
  velocity_out->set_dims(param_dim);
P
PuQing 已提交
2920
  velocity_out->set_dtype(MPType);
2921 2922
  if (master_param_out) {
    master_param_out->set_dims(param_dim);
P
PuQing 已提交
2923
    master_param_out->set_dtype(MPType);
2924 2925 2926
  }
}

2927 2928
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out) {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
  auto inputs_dims = GetMetaTensorsDim(x);

  const size_t inputs_num = inputs_dims.size();
  PADDLE_ENFORCE_GT(
      inputs_num,
      static_cast<size_t>(1),
      phi::errors::InvalidArgument(
          "The number of input tensors in multi_dot op should > 1."));

  const size_t n = inputs_dims.size();
  auto first_dim = inputs_dims[0];

  bool is_vector = false;
  phi::DDim out_dim;

  PADDLE_ENFORCE_LT(
      first_dim.size(),
      static_cast<size_t>(3),
      phi::errors::InvalidArgument(
          "multi_dot: the first input tensor must be 1D or 2D but got[%d]!",
          static_cast<int>(first_dim.size())));

  // If the first tensor is 1D of size n view it as a row vector (1, n)
  if (first_dim.size() == 1) {
    first_dim = phi::make_ddim({1, static_cast<int>(first_dim[0])});
    is_vector = true;
  }

  auto last_dim = inputs_dims[n - 1];
  PADDLE_ENFORCE_LT(
      last_dim.size(),
      static_cast<size_t>(3),
      phi::errors::InvalidArgument(
          "the last input tensor of multi_dot must be 1D or 2D but got[%d]!",
          static_cast<int>(first_dim.size())));

  // If the last tensor is 1D of size n view it as a column vector (n, 1)
  if (last_dim.size() == 1) {
    last_dim = phi::make_ddim({static_cast<int>(last_dim[0]), 1});
2968
    out_dim = is_vector ? phi::make_ddim({}) : phi::make_ddim({first_dim[0]});
2969 2970 2971 2972 2973
  } else {
    out_dim = is_vector ? phi::make_ddim({last_dim[1]})
                        : phi::make_ddim({first_dim[0], last_dim[1]});
  }

R
risemeup1 已提交
2974
  auto width = first_dim.at(1);
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
  for (size_t i = 1; i < n - 1; i++) {
    PADDLE_ENFORCE_EQ(inputs_dims[i].size(),
                      static_cast<size_t>(2),
                      phi::errors::InvalidArgument(
                          "the input tensor of multi_dot op must be 2D."));

    const auto& tmp_dim = inputs_dims[i];
    PADDLE_ENFORCE_EQ(
        tmp_dim[0],
        width,
        phi::errors::InvalidArgument(
            "the input matrix does not meet the multiplication requirements."));
    width = tmp_dim[1];
  }

  PADDLE_ENFORCE_EQ(
      last_dim[0],
      width,
      phi::errors::InvalidArgument(
          "the input matrix does not meet the multiplication requirements."));

  out->set_dims(out_dim);
  out->set_dtype(x.at(0)->dtype());
  out->share_lod(*x.at(0));
}

3001
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
                        const MetaTensor& ids,
                        MetaTensor* out) {
  PADDLE_ENFORCE_NE(
      ins.empty(),
      true,
      phi::errors::InvalidArgument("MultiInput(X) shouldn't be empty."));
  auto ids_dim = ids.dims();
  PADDLE_ENFORCE_EQ(ids_dim.size(),
                    2,
                    phi::errors::PreconditionNotMet(
                        "The index tensor must be a vector with 2 dimensions"));
  PADDLE_ENFORCE_EQ(
      ids_dim[1],
      1,
      phi::errors::PreconditionNotMet(
          "The index tensor must be a vector with batchSize x 1."));

  auto ins_dims = GetMetaTensorsDim(ins);
  auto num_ins = ins_dims.size();
  PADDLE_ENFORCE_GT(
      num_ins,
      1,
      phi::errors::InvalidArgument("multiplex operator should have more than "
                                   "one candidate input tensors."));

  auto in_dim = ins_dims[0];
  PADDLE_ENFORCE_GE(
      in_dim.size(),
      2,
      phi::errors::InvalidArgument(
          "The rank of candidate tensors must be not less than 2."));
  for (size_t i = 1; i < num_ins; i++) {
    auto dim = ins_dims[i];
    PADDLE_ENFORCE_EQ(
        in_dim,
        dim,
        phi::errors::PreconditionNotMet(
            "All the candidate tensors must have the same size."));
  }
3041 3042 3043 3044 3045 3046 3047 3048

  PADDLE_ENFORCE_GE(
      in_dim[0],
      ids_dim[0],
      phi::errors::InvalidArgument("The 2nd-dim of input cannot be smaller "
                                   "than batchSize of the index tensor."));

  in_dim[0] = ids_dim[0];
3049 3050 3051 3052
  out->set_dims(in_dim);
  out->set_dtype(ins[0]->dtype());
}

F
From00 已提交
3053 3054
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
3055
                        const MetaTensor& rois_num,
F
From00 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out) {
  auto input_dims = x.dims();
  auto rois_dims = rois.dims();

  PADDLE_ENFORCE_EQ(
      input_dims.size(),
      4,
      errors::InvalidArgument("The format of input tensor is NCHW"));
  PADDLE_ENFORCE_EQ(rois_dims.size(),
                    2,
                    errors::InvalidArgument(
                        "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                        "given as [(x1, y1, x2, y2), ...]"));
  PADDLE_ENFORCE_EQ(rois_dims[1],
                    4,
                    errors::InvalidArgument(
                        "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                        "given as [(x1, y1, x2, y2), ...]"));
3078 3079
  if (rois_num) {
    auto rois_num_dims = rois_num.dims();
F
From00 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
    PADDLE_ENFORCE_EQ(
        rois_num_dims.size(),
        1,
        errors::InvalidArgument("The second dimension of RoisNum should "
                                "be 1, but received dimension is %d",
                                rois_num_dims.size()));
  }

  PADDLE_ENFORCE_EQ(
      input_dims[1],
      output_channels * pooled_height * pooled_width,
      errors::InvalidArgument(
          "the channel of X(%d) "
          "should be equal to the product of "
          "output_channels(%d), pooled_height(%d) and pooled_width(%d)",
          input_dims[1],
          output_channels,
          pooled_height,
          pooled_width));

  PADDLE_ENFORCE_GT(pooled_height,
                    0,
                    errors::InvalidArgument(
                        "The pooled output height must be greater than 0"));
  PADDLE_ENFORCE_GT(pooled_width,
                    0,
                    errors::InvalidArgument(
                        "The pooled output width must be greater than 0"));
  PADDLE_ENFORCE_GT(output_channels,
                    1,
                    errors::InvalidArgument(
                        "The pooled output channels must greater than 1"));
  PADDLE_ENFORCE_GT(
      spatial_scale,
      0.0f,
      errors::InvalidArgument("The spatial scale must greater than 0."));

  auto out_dims = input_dims;
  out_dims[0] = rois_dims[0];
  out_dims[1] =
      output_channels;  // input_dims[1] / (pooled_height * pooled_width);
  out_dims[2] = pooled_height;
  out_dims[3] = pooled_width;

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
void RmsNormInferMeta(const MetaTensor& x,
                      const MetaTensor& bias,
                      const MetaTensor& residual,
                      const MetaTensor& norm_weight,
                      const MetaTensor& norm_bias,
                      const float epsilon,
                      const int begin_norm_axis,
                      const float quant_scale,
                      const int quant_round_type,
                      const float quant_max_bound,
                      const float quant_min_bound,
                      MetaTensor* out,
                      MetaTensor* residual_out) {
  std::vector<int64_t> x_dims_vec = phi::vectorize(x.dims());
  auto x_dims_size = x_dims_vec.size();

  size_t normalized_dims = 1;
  for (size_t i = begin_norm_axis; i < x_dims_size; ++i) {
    normalized_dims *= x_dims_vec[i];
  }

  PADDLE_ENFORCE_EQ(normalized_dims,
                    norm_weight.dims()[0],
                    phi::errors::InvalidArgument(
                        "The normalized size of Input(X) must equal to be"
                        "the size of Weight, but received"
                        "normalized size of Input(X) is [%d], received size"
                        "of Weight is [%d]",
                        normalized_dims,
                        norm_weight.dims()[0]));

  auto out_dims = phi::make_ddim(x_dims_vec);

  out->set_dims(out_dims);
  if (quant_scale <= 0.0f) {
    out->set_dtype(x.dtype());
  } else {
    out->set_dtype(phi::DataType::INT8);
  }
  out->set_layout(x.layout());
  out->share_lod(x);

  residual_out->set_dims(out_dims);
  residual_out->set_dtype(x.dtype());
  residual_out->set_layout(x.layout());
  residual_out->share_lod(x);
}

H
hong 已提交
3176 3177 3178 3179 3180
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
3181
                      const MetaTensor& mean_grad,
3182
                      const MetaTensor& master_param,
H
hong 已提交
3183 3184 3185 3186
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
3187
                      bool multi_precision,
H
hong 已提交
3188 3189 3190
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
3191 3192
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs) {
H
hong 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
  if (centered) {
    PADDLE_ENFORCE_NOT_NULL(
        mean_grad_out,
        phi::errors::InvalidArgument(
            "Output(MeanGradOut) of RmspropOp should not be null."));
  }

  auto param_dim = param.dims();
  PADDLE_ENFORCE_EQ(param_dim,
                    moment.dims(),
                    phi::errors::InvalidArgument(
                        "Param and Momentum input of RmspropOp "
                        "should have the same dimension. But received "
                        "Param's dim [%s] and Moment [%s]",
                        param_dim,
                        moment.dims()));
  PADDLE_ENFORCE_EQ(param_dim,
                    mean_square.dims(),
                    phi::errors::InvalidArgument(
                        "Param and Momentum input of RmspropOp "
                        "should have the same dimension. But received "
                        "Param's dim [%s] and MeanSquare [%s]",
                        param_dim,
                        mean_square.dims()));

  auto lr_dim = learning_rate.dims();
  PADDLE_ENFORCE_EQ(phi::product(lr_dim),
                    1,
                    phi::errors::InvalidArgument(
                        "Learning Rate of RmspropOp should be a scalar. But "
                        "received LearningRate's dim [%s]",
                        phi::product(lr_dim)));

  param_out->set_dims(param_dim);
  param_out->set_dtype(param.dtype());
  moment_out->set_dims(param_dim);
  moment_out->set_dtype(moment.dtype());
  mean_square_out->set_dims(param_dim);
  mean_square_out->set_dtype(mean_square.dtype());
  if (centered) {
    mean_grad_out->set_dims(param_dim);
3234
    mean_grad_out->set_dtype(mean_grad.dtype());
H
hong 已提交
3235 3236 3237
  }
}

3238
void RnnInferMeta(const MetaTensor& x,
3239 3240
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
3241
                  const MetaTensor& sequence_length,
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve) {
  auto in_dims = x.dims();

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      3,
      phi::errors::InvalidArgument("The rank of Input in RNN  must be 3. But "
                                   "received Input's rank is %d.",
                                   in_dims.size()));

  if (sequence_length) {
3264
    auto seq_dims = sequence_length.dims();
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
    PADDLE_ENFORCE_EQ(
        in_dims[1],
        seq_dims[0],
        phi::errors::InvalidArgument(
            "The size of SequenceLength has to equal the batch_size. But "
            "received batch_size is %d and the size of SequenceLength is %d.",
            in_dims[1],
            seq_dims[0]));
  }

  PADDLE_ENFORCE_EQ(pre_state[0]->dims().size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The rank of PreState in RNN  must be 3. But "
                        "the received rank is %d.",
                        pre_state[0]->dims().size()));
  size_t i = 0;
  for (; i < pre_state.size(); ++i) {
    PADDLE_ENFORCE_EQ(
        in_dims[1],
        pre_state[i]->dims()[1],
        phi::errors::InvalidArgument(
            "The second dimension size (representing for batch size) of "
            "Input and PreState should be equal. But received %d and %d.",
            in_dims[1],
            pre_state[i]->dims()[1]));
    PADDLE_ENFORCE_EQ(
        pre_state[0]->dims(),
        pre_state[i]->dims(),
        phi::errors::InvalidArgument(
            "The dims of all tensors in PreState should be same. But "
            "received PreState[0] is %s and PreState[%d] is %s.",
            pre_state[0]->dims(),
            i,
            pre_state[i]->dims()));
  }
  size_t num_state = mode == "LSTM" ? 2 : 1;
  PADDLE_ENFORCE_EQ(i,
                    num_state,
                    phi::errors::InvalidArgument(
                        "The number of tensors in PreState of %s should be %d, "
                        "but received %d.",
                        mode,
                        2,
                        i));

  auto out_dims = in_dims;
  out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());

  int state_num = pre_state.size();
  for (int i = 0; i < state_num; ++i) {
    state[i]->set_dims(pre_state[i]->dims());
    state[i]->set_dtype(x.dtype());
  }
}

Z
zyfncg 已提交
3323
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
3324 3325
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
3326
                  const MetaTensor& master_param,
H
hong 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out) {
  PADDLE_ENFORCE_NOT_NULL(param_out,
                          phi::errors::InvalidArgument(
                              "Output(ParamOut) of SGDOp should not be null."));

  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_EQ(phi::product(lr_dims),
                    1,
                    phi::errors::InvalidArgument(
                        "Learning rate should have 1 element. But received "
                        "LearningRate dims [%s]",
                        phi::product(lr_dims)));

  param_out->set_dims(param.dims());
  param_out->set_dtype(param.dtype());
3344 3345 3346 3347 3348 3349 3350 3351 3352
  if (multi_precision) {
    master_param_out->set_dims(master_param.dims());
    if (DataType::FLOAT16 == master_param.dtype() ||
        DataType::BFLOAT16 == master_param.dtype()) {
      master_param_out->set_dtype(DataType::FLOAT32);
    } else {
      master_param_out->set_dtype(master_param.dtype());
    }
  }
H
hong 已提交
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            const MetaTensor& pos_weight,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config) {
  auto x_dims = x.dims();
  auto labels_dims = label.dims();
  int rank = x_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    labels_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        labels_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(x_dims) <= 0 || phi::product(labels_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(
        phi::slice_ddim(x_dims, 0, rank),
        phi::slice_ddim(labels_dims, 0, rank),
        phi::errors::InvalidArgument(
            "Input(X) and Input(Label) shall have the same shape "
            "except the last dimension. But received: the shape of "
            "Input(X) is [%s], the shape of Input(Label) is [%s].",
            x_dims,
            labels_dims));

    if (pos_weight) {
      auto weight_dims = pos_weight.dims();
      PADDLE_ENFORCE_EQ(
          phi::slice_ddim(weight_dims, 0, rank),
          phi::slice_ddim(labels_dims, 0, rank),
          phi::errors::InvalidArgument(
              "Input(pos_weight) and Input(Label) shall have the same shape "
              "But received: the shape of Input(PosWeight) is [%s], "
              "the shape of Input(Label) is [%s].",
              weight_dims,
              labels_dims));
    }
  }

  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count) {
  auto src_index_dims = src_index.dims();
  if (src_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(src_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Src_index should be 1 when it "
                          "is 2D, but we get %d",
                          src_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        src_index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The Src_index should be 1D, when it is not 2D, but we get %d",
            src_index_dims.size()));
  }

  auto dst_index_dims = dst_index.dims();
  if (dst_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(dst_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Dst_index should be 1 when it "
                          "is 2D, but we get %d",
                          dst_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        dst_index_dims.size(),
        1,
        phi::errors::InvalidArgument("The Dst_index should be 1D, "
                                     "when it is not 2D, but we get %d",
                                     dst_index_dims.size()));
  }

  PADDLE_ENFORCE_EQ(src_index_dims[0],
                    dst_index_dims[0],
                    phi::errors::InvalidArgument(
                        "Src_index and Dst_index should have the same shape."));

  auto y_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      y_dims[0],
      src_index_dims[0],
      phi::errors::InvalidArgument(
          "Expect Input Y to have size %d as Src_index on the first dimension, "
          "but we get %d",
          src_index_dims[0],
          y_dims[0]));

  auto x_dims = x.dims();
  if (reduce_op == "MEAN") {
    dst_count->set_dims({-1});
    dst_count->set_dtype(DataType::INT32);
  }

  // Infer out's shape according to x and e(need broadcasting condition)
  out->set_dtype(x.dtype());
  auto x_dims1 = phi::vectorize<int>(x_dims);
  auto y_dims1 = phi::vectorize<int>(y_dims);
  std::vector<int> x_dims2(x_dims1.begin() + 1, x_dims1.end());
  std::vector<int> y_dims2(y_dims1.begin() + 1, y_dims1.end());

  int max_dim = std::max(x_dims2.size(), y_dims2.size());
  int axis = std::abs(static_cast<int>(x_dims2.size() - y_dims2.size()));
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  // Only need to broadcast dimensions other than the 0th dimension.
  phi::funcs::GetBroadcastDimsArrays(phi::make_ddim(x_dims2),
                                     phi::make_ddim(y_dims2),
                                     x_dims_array.data(),
                                     y_dims_array.data(),
                                     out_dims_array.data(),
                                     max_dim,
                                     axis);
  out_dims_array.insert(out_dims_array.begin(), -1);
  out->set_dims(phi::make_ddim(out_dims_array));
}

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out) {
  auto src_index_dims = src_index.dims();
  if (src_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(src_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Src_index should be 1 when it "
                          "is 2D, but we get %d",
                          src_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        src_index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The Src_index should be 1D, when it is not 2D, but we get %d",
            src_index_dims.size()));
  }

  auto dst_index_dims = dst_index.dims();
  if (dst_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(dst_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Dst_index should be 1 when it "
                          "is 2D, but we get %d",
                          dst_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        dst_index_dims.size(),
        1,
        phi::errors::InvalidArgument("The Dst_index should be 1D, "
                                     "when it is not 2D, but we get %d",
                                     dst_index_dims.size()));
  }

  PADDLE_ENFORCE_EQ(src_index_dims[0],
                    dst_index_dims[0],
                    phi::errors::InvalidArgument(
                        "Src_index and Dst_index should have the same shape."));

  // Infer out's shape according to x and y(need broadcasting condition)
  out->set_dtype(x.dtype());
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto x_dims1 = phi::vectorize<int>(x_dims);
  auto y_dims1 = phi::vectorize<int>(y_dims);
  std::vector<int> x_dims2(x_dims1.begin() + 1, x_dims1.end());
  std::vector<int> y_dims2(y_dims1.begin() + 1, y_dims1.end());
  int max_dim = std::max(x_dims2.size(), y_dims2.size());
  int axis = std::abs(static_cast<int>(x_dims2.size() - y_dims2.size()));
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  // Only need to broadcast dimensions other than the 0th dimension.
  phi::funcs::GetBroadcastDimsArrays(phi::make_ddim(x_dims2),
                                     phi::make_ddim(y_dims2),
                                     x_dims_array.data(),
                                     y_dims_array.data(),
                                     out_dims_array.data(),
                                     max_dim,
                                     axis);
  out_dims_array.insert(out_dims_array.begin(), src_index_dims[0]);
  out->set_dims(phi::make_ddim(out_dims_array));
}

3568
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
3569
                    int axis,
3570 3571
                    MetaTensor* out,
                    MetaConfig config) {
C
csy0225 已提交
3572 3573 3574 3575 3576 3577 3578
  PADDLE_ENFORCE_GT(x.size(),
                    0UL,
                    phi::errors::InvalidArgument(
                        "Number of Inputs(x) must be larger than 0, but"
                        " received value is:%d.",
                        x.size()));
  const auto& input_dims = GetMetaTensorsDim(x);
3579 3580 3581 3582
  // we reuse concat logic to compute out_dim. we set concat_axis==-1 to check
  // every axis in input_tensors.
  auto out_dim =
      phi::funcs::ComputeAndCheckShape(config.is_runtime, input_dims, -1);
C
csy0225 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
  int rank = input_dims[0].size();
  PADDLE_ENFORCE_GE(
      axis,
      -(rank + 1),
      phi::errors::InvalidArgument(
          "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d, "
          "but received axis is:%d.",
          rank,
          axis));
  PADDLE_ENFORCE_LT(
      axis,
      rank + 1,
      phi::errors::InvalidArgument(
          "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d, "
          "but received axis is:%d",
          rank,
          axis));
  if (axis < 0) axis += (rank + 1);
3601
  auto vec = phi::vectorize<int64_t>(out_dim);
C
csy0225 已提交
3602 3603 3604 3605 3606 3607
  vec.insert(vec.begin() + axis, input_dims.size());
  out->set_dims(phi::make_ddim(vec));
  out->set_dtype(x.at(0)->dtype());
  out->share_lod(*x.at(0));
}

3608
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
3609
                             std::vector<MetaTensor*> out) {
Y
YuanRisheng 已提交
3610 3611 3612 3613 3614 3615 3616 3617
  PADDLE_ENFORCE_EQ(
      x.size(),
      out.size(),
      phi::errors::InvalidArgument(
          "Input's size should be equal to the output's size"
          "but received input size: (%d) does not equals output_size: (%d)",
          x.size(),
          out.size()));
3618
  for (size_t i = 0; i < x.size(); ++i) {
3619 3620 3621
    if (out[i]) {
      out[i]->share_meta(*x[i]);
    }
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
  }
}

void ShareBufferInferMeta(const std::vector<const MetaTensor*>& xs,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> outs,
                          std::vector<MetaTensor*> xouts) {
  if (share_dims_and_dtype.empty()) {
    return;
  }
  PADDLE_ENFORCE_EQ(xs.size(),
                    share_dims_and_dtype.size(),
                    phi::errors::PermissionDenied(
                        "The input(X) and attribute share_dims_and_dtype "
                        "should have the same size, but got size of input(X) "
                        "is %d and size of share_dims_and_dtype is %d.",
                        xs.size(),
                        share_dims_and_dtype.size()));

  for (size_t i = 0; i < xs.size(); ++i) {
    if (share_dims_and_dtype[i]) {
      outs[i]->set_dims(xs[i]->dims());
      outs[i]->set_dtype(xs[i]->dtype());
    }
3646 3647 3648
  }
}

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps) {
  PADDLE_ENFORCE_EQ(xs.size(),
                    outs.size(),
                    phi::errors::InvalidArgument(
                        "The input(X) and output(Out) should have same size in "
                        "Operator(update_loss_scaling), size of input(X) is %d "
                        "and size of output(Out) is %d.",
                        xs.size(),
                        outs.size()));
  for (size_t i = 0; i < xs.size(); ++i) {
3667 3668 3669 3670
    if (xs[i] != nullptr && outs[i] != nullptr) {
      outs[i]->set_dims(xs[i]->dims());
      outs[i]->set_dtype(xs[i]->dtype());
    }
3671 3672 3673 3674 3675 3676 3677 3678
  }
  loss_scaling->set_dims({1});
  out_good_steps->set_dims({1});
  out_good_steps->set_dtype(DataType::INT32);
  out_bad_steps->set_dims({1});
  out_bad_steps->set_dtype(DataType::INT32);
}

0
0x45f 已提交
3679 3680
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
3681 3682
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
3683 3684
                      int blank,
                      bool norm_by_times,
3685 3686
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad) {
0
0x45f 已提交
3687 3688 3689
  auto logits_dims = logits.dims();
  int sequence_width = 0;

3690
  if (logits_length) {
0
0x45f 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
    sequence_width = logits_dims[2];
  } else {
    sequence_width =
        static_cast<int>(phi::product(logits_dims) / logits_dims[0]);
  }

  PADDLE_ENFORCE_GE(
      blank,
      0,
      errors::InvalidArgument(
          "The value of Attr(blank) should be in interval [0, %d), "
          "but received %d",
          blank));
  PADDLE_ENFORCE_LT(
      blank,
      sequence_width,
      errors::InvalidArgument(
          "The value of Attr(blank) should be in interval [0, %d), "
          "but received %d",
          blank));

  loss->set_dims({-1, 1});
  loss->set_dtype(logits.dtype());
}

H
Hui Zhang 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad) {
  auto acts_dims = input.dims();
  int D = acts_dims[3];

  PADDLE_ENFORCE_GE(
      blank,
      0,
      errors::InvalidArgument(
          "The value of Attr(blank) should be in interval [0, %d), "
          "but received %d",
          blank));
  PADDLE_ENFORCE_LT(
      blank,
      D,
      errors::InvalidArgument(
          "The value of Attr(blank) should be in interval [0, %d), "
          "but received %d",
          blank));

  loss->set_dims({-1});
  loss->set_dtype(input.dtype());
}

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
void WeightOnlyLinearInferMeta(const MetaTensor& x,
                               const MetaTensor& weight,
                               const MetaTensor& bias,
                               const MetaTensor& weight_scale,
                               const std::string& weight_dtype,
                               MetaTensor* out) {
  auto x_dims = x.dims();
  auto w_dims = weight.dims();
  auto n = weight_scale.dims()[0];
  PADDLE_ENFORCE(
      weight_dtype == "int8" || weight_dtype == "int4",
      errors::InvalidArgument("quant_method must be 'int8' or 'int4'."));
  PADDLE_ENFORCE_EQ(
      w_dims.size(),
      2UL,
      errors::InvalidArgument("The input(weight) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      weight_scale.dims().size(),
      1UL,
      errors::InvalidArgument("The input(weight_scale) must be a 1D Tensor."));
  PADDLE_ENFORCE_EQ(
      w_dims[0] % 16,
      0,
      phi::errors::InvalidArgument(
          "The first dimension of input must be divisible by 16, but got[%d]",
          w_dims[0]));
  PADDLE_ENFORCE_EQ(
      w_dims[1] % 16,
      0,
      phi::errors::InvalidArgument(
          "The second dimension of input must be divisible by 16, but got[%d]",
          w_dims[1]));
  PADDLE_ENFORCE_EQ(
      x_dims[x_dims.size() - 1],
      w_dims[1],
      errors::InvalidArgument(
          "Input(X) dim[-1] and Input(Weight) dim[1] should be euqal."
          "But received Input(X) dim[-1](%s) != Input(Weight) dim[1](%s)",
          x_dims[x_dims.size() - 1],
          w_dims[1]));
  auto out_dims = x_dims;
  out_dims[out_dims.size() - 1] = n;
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out) {
  auto cond_dims = condition.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      cond_dims,
      x_dims,
      phi::errors::InvalidArgument(
          "The dims of Inputs(Condition) and Inputs(X) should be same. "
          "But received Condition's shape is [%s], X's shape is [%s]",
          cond_dims,
          x_dims));
  PADDLE_ENFORCE_EQ(x_dims,
                    y_dims,
                    phi::errors::InvalidArgument(
                        "The dims of Inputs(X) and Inputs(Y) should be same. "
                        "But received X's shape is [%s], Y's shape is [%s]",
                        x_dims,
                        y_dims));
  out->share_meta(x);
}

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask) {
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
  auto dim_x = x.dims();
  auto dim_gtbox = gt_box.dims();
  auto dim_gtlabel = gt_label.dims();
  int anchor_num = anchors.size() / 2;
  int mask_num = anchor_mask.size();

  PADDLE_ENFORCE_EQ(dim_x.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input(X) should be a 4-D tensor. But received "
                        "X dimension size(%s)",
                        dim_x.size()));
  PADDLE_ENFORCE_EQ(
      dim_x[2],
      dim_x[3],
      phi::errors::InvalidArgument("Input(X) dim[3] and dim[4] should be euqal."
                                   "But received dim[3](%s) != dim[4](%s)",
                                   dim_x[2],
                                   dim_x[3]));
  PADDLE_ENFORCE_EQ(
      dim_x[1],
      mask_num * (5 + class_num),
      phi::errors::InvalidArgument(
          "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
          "+ class_num))."
          "But received dim[1](%s) != (anchor_mask_number * "
          "(5+class_num)(%s).",
          dim_x[1],
          mask_num * (5 + class_num)));
  PADDLE_ENFORCE_EQ(
      dim_gtbox.size(),
      3,
      phi::errors::InvalidArgument("Input(GTBox) should be a 3-D tensor, but "
                                   "received gtbox dimension size(%s)",
                                   dim_gtbox.size()));
  PADDLE_ENFORCE_EQ(
      dim_gtbox[2],
      4,
      phi::errors::InvalidArgument("Input(GTBox) dim[2] should be 4",
                                   "But receive dim[2](%s) != 5. ",
                                   dim_gtbox[2]));
  PADDLE_ENFORCE_EQ(dim_gtlabel.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "Input(GTLabel) should be a 2-D tensor,"
                        "But received Input(GTLabel) dimension size(%s) != 2.",
                        dim_gtlabel.size()));
  PADDLE_ENFORCE_EQ(
      dim_gtlabel[0],
      dim_gtbox[0],
      phi::errors::InvalidArgument(
          "Input(GTBox) dim[0] and Input(GTLabel) dim[0] should be same,"
          "But received Input(GTLabel) dim[0](%s) != "
          "Input(GTBox) dim[0](%s)",
          dim_gtlabel[0],
          dim_gtbox[0]));
  PADDLE_ENFORCE_EQ(
      dim_gtlabel[1],
      dim_gtbox[1],
      phi::errors::InvalidArgument(
          "Input(GTBox) and Input(GTLabel) dim[1] should be same,"
          "But received Input(GTBox) dim[1](%s) != Input(GTLabel) "
          "dim[1](%s)",
          dim_gtbox[1],
          dim_gtlabel[1]));
  PADDLE_ENFORCE_GT(anchors.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(anchors) length should be greater then 0."
                        "But received anchors length(%s)",
                        anchors.size()));
  PADDLE_ENFORCE_EQ(anchors.size() % 2,
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(anchors) length should be even integer."
                        "But received anchors length(%s)",
                        anchors.size()));
3908
  for (auto& item : anchor_mask) {
3909
    PADDLE_ENFORCE_LT(
3910
        item,
3911 3912 3913 3914
        anchor_num,
        phi::errors::InvalidArgument(
            "Attr(anchor_mask) should not crossover Attr(anchors)."
            "But received anchor_mask[i](%s) > anchor_num(%s)",
3915
            item,
3916 3917 3918 3919 3920 3921 3922 3923 3924
            anchor_num));
  }
  PADDLE_ENFORCE_GT(class_num,
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(class_num) should be an integer greater then 0."
                        "But received class_num(%s) < 0",
                        class_num));

3925 3926
  if (gt_score) {
    auto dim_gtscore = gt_score.dims();
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
    PADDLE_ENFORCE_EQ(
        dim_gtscore.size(),
        2,
        phi::errors::InvalidArgument("Input(GTScore) should be a 2-D tensor"
                                     "But received GTScore dimension(%s)",
                                     dim_gtbox.size()));
    PADDLE_ENFORCE_EQ(
        dim_gtscore[0],
        dim_gtbox[0],
        phi::errors::InvalidArgument(
            "Input(GTBox) and Input(GTScore) dim[0] should be same"
            "But received GTBox dim[0](%s) != GTScore dim[0](%s)",
            dim_gtbox[0],
            dim_gtscore[0]));
    PADDLE_ENFORCE_EQ(
        dim_gtscore[1],
        dim_gtbox[1],
        phi::errors::InvalidArgument(
            "Input(GTBox) and Input(GTScore) dim[1] should be same"
            "But received GTBox dim[1](%s) != GTScore dim[1](%s)",
            dim_gtscore[1],
            dim_gtbox[1]));
  }

  std::vector<int64_t> dim_out({dim_x[0]});
  loss->set_dims(phi::make_ddim(dim_out));
  loss->set_dtype(x.dtype());

  std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
  objectness_mask->set_dims(phi::make_ddim(dim_obj_mask));
  objectness_mask->set_dtype(x.dtype());

  std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
  gt_match_mask->set_dims(phi::make_ddim(dim_gt_match_mask));
  gt_match_mask->set_dtype(x.dtype());
}

3964
void FusedAdamInferMeta(
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out) {
  size_t in_size = params.size();
  for (size_t i = 0; i < in_size; i++) {
    params_out[i]->set_dims(params[i]->dims());
    params_out[i]->set_dtype(params[i]->dtype());
    moments1_out[i]->set_dims(moments1[i]->dims());
    moments1_out[i]->set_dtype(moments1[i]->dtype());
    moments2_out[i]->set_dims(moments2[i]->dims());
    moments2_out[i]->set_dtype(moments2[i]->dtype());
    beta1_pows_out[i]->set_dims(beta1_pows[i]->dims());
    beta1_pows_out[i]->set_dtype(beta1_pows[i]->dtype());
    beta2_pows_out[i]->set_dims(beta2_pows[i]->dims());
    beta2_pows_out[i]->set_dtype(beta2_pows[i]->dtype());
    if (master_params && !master_params_out.empty()) {
      master_params_out[i]->set_dims(master_params.get()[i]->dims());
      master_params_out[i]->set_dtype(master_params.get()[i]->dtype());
    }
  }
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
void FusedConvInferMeta(const MetaTensor& input,
                        const MetaTensor& filter,
                        const MetaTensor& bias,
                        const MetaTensor& residual_param,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        const std::vector<int>& dilations,
                        int groups,
                        const std::string& data_format,
                        const std::string& mkldnn_data_type,
                        const std::string& fuse_activation,
                        bool fuse_residual_conn,
                        bool force_fp32_output,
                        MetaTensor* out,
                        MetaConfig config) {
  ConvInferMeta(input,
                filter,
                strides,
                paddings,
                padding_algorithm,
                dilations,
                groups,
                data_format,
                out,
                config);
}

4035 4036 4037
void FusedRopeInferMeta(const MetaTensor& q,
                        const MetaTensor& k,
                        const MetaTensor& v,
4038 4039
                        const MetaTensor& sin,
                        const MetaTensor& cos,
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
                        MetaTensor* out_q,
                        MetaTensor* out_k,
                        MetaTensor* out_v) {
  auto input_dims = q.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        input_dims.size()));
  if (q) {
    out_q->set_dims(q.dims());
    out_q->set_dtype(q.dtype());
  }
  if (k) {
    out_k->set_dims(k.dims());
    out_k->set_dtype(k.dtype());
  }
  if (v) {
    out_v->set_dims(v.dims());
    out_v->set_dtype(v.dtype());
  }
}

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out) {
  out->set_dims(x.dims());
  out->share_lod(x);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

S
Siming Dai 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
void WeightedSampleNeighborsInferMeta(const MetaTensor& row,
                                      const MetaTensor& col_ptr,
                                      const MetaTensor& edge_weight,
                                      const MetaTensor& x,
                                      const MetaTensor& eids,
                                      int sample_size,
                                      bool return_eids,
                                      MetaTensor* out,
                                      MetaTensor* out_count,
                                      MetaTensor* out_eids) {
  // GSN: GraphSampleNeighbors
  auto GSNShapeCheck = [](const phi::DDim& dims, std::string tensor_name) {
    if (dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          dims[1],
          1,
          phi::errors::InvalidArgument("The last dim of %s should be 1 when it "
                                       "is 2D, but we get %d",
                                       tensor_name,
                                       dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          dims.size(),
          1,
          phi::errors::InvalidArgument(
              "The %s should be 1D, when it is not 2D, but we get %d",
              tensor_name,
              dims.size()));
    }
  };

  GSNShapeCheck(row.dims(), "row");
  GSNShapeCheck(col_ptr.dims(), "colptr");
  GSNShapeCheck(edge_weight.dims(), "edge_weight");
  GSNShapeCheck(x.dims(), "input_nodes");
  if (return_eids) {
    GSNShapeCheck(eids.dims(), "eids");
    out_eids->set_dims({-1});
    out_eids->set_dtype(row.dtype());
  }

  out->set_dims({-1});
  out->set_dtype(row.dtype());
  out_count->set_dims({-1});
  out_count->set_dtype(DataType::INT32);
}
4124

4125 4126
void MaskedMultiheadAttentionInferMeta(const MetaTensor& x,
                                       const MetaTensor& cache_kv,
4127
                                       const MetaTensor& bias,
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
                                       const MetaTensor& src_mask,
                                       const MetaTensor& cum_offsets,
                                       const MetaTensor& sequence_lengths,
                                       const MetaTensor& rotary_tensor,
                                       const MetaTensor& beam_cache_offset,
                                       const MetaTensor& qkv_out_scale,
                                       const MetaTensor& out_shift,
                                       const MetaTensor& out_smooth,
                                       int seq_len,
                                       int rotary_emb_dims,
                                       const bool use_neox_rotary_style,
4139
                                       const std::string& compute_dtype,
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
                                       const float out_scale,
                                       const int quant_round_type,
                                       const float quant_max_bound,
                                       const float quant_min_bound,
                                       MetaTensor* out,
                                       MetaTensor* cache_kv_out,
                                       MetaTensor* beam_cache_offset_out) {
  int bsz = x.dims()[0];
  auto cache_kv_dims = cache_kv.dims();
  int num_head = cache_kv.dims()[2];
  int dim_head = cache_kv.dims()[4];

  PADDLE_ENFORCE_EQ(
      cache_kv_dims.size(),
      5,
      errors::InvalidArgument("The cache_kv must be 5 dims, but got %d",
                              cache_kv_dims.size()));

  PADDLE_ENFORCE_EQ(
      cache_kv_dims[0],
      2,
      errors::InvalidArgument("The first dim of cache_kv must be 2, but got %d",
                              cache_kv_dims[0]));

  if (rotary_tensor) {
    PADDLE_ENFORCE_EQ(
        rotary_tensor.dtype(),
        DataType::FLOAT32,
        errors::InvalidArgument(
            "The dtype of rotary_tensor must be float32, but got %d",
            rotary_tensor.dtype()));
  }

  out->set_dims({bsz, num_head * dim_head});

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
  auto FBADtypeCheck = [](const MetaTensor& check_tensor,
                          const std::string& tensor_name,
                          const std::string& compute_dtype) {
    if (compute_dtype == "bf16") {
      PADDLE_ENFORCE_EQ(
          check_tensor.dtype(),
          phi::DataType::BFLOAT16,
          phi::errors::InvalidArgument(
              "Input(%s) dtype must be the same with Attr(compute_dtype)",
              tensor_name));
    } else if (compute_dtype == "fp16") {
      PADDLE_ENFORCE_EQ(
          check_tensor.dtype(),
          phi::DataType::FLOAT16,
          phi::errors::InvalidArgument(
              "Input(%s) dtype must be the same with Attr(compute_dtype)",
              tensor_name));
    } else if (compute_dtype == "fp32") {
      PADDLE_ENFORCE_EQ(
          check_tensor.dtype(),
          phi::DataType::FLOAT32,
          phi::errors::InvalidArgument(
              "Input(%s) dtype must be the same with Attr(compute_dtype)",
              tensor_name));
    }
  };

  // In the case of quantization enabled, the dtype for computation is
  // determined based on compute_dtype.
  if (x.dtype() == phi::DataType::INT32) {
    PADDLE_ENFORCE_NE(
        compute_dtype,
        "default",
        phi::errors::InvalidArgument(
            "If Input(x) dtype is INT32, Attr(compute_dtype) must be set."));

    if (bias) {
      FBADtypeCheck(bias, "bias", compute_dtype);
    }

    if (out_scale > 0) {
      out->set_dtype(phi::DataType::INT8);
    } else {
      if (compute_dtype == "bf16") {
        out->set_dtype(phi::DataType::BFLOAT16);
      } else if (compute_dtype == "fp16") {
        out->set_dtype(phi::DataType::FLOAT16);
      } else if (compute_dtype == "fp32") {
        out->set_dtype(phi::DataType::FLOAT32);
      } else {
        PADDLE_THROW(phi::errors::InvalidArgument(
            "In the case of quantization enabled with Input(x) INT32, "
            "Attr(compute_dtype) must be set in (bf16, fp16, fp32), "
            "but get compute_dtype (%s)",
            compute_dtype));
      }
    }
4232
  } else {
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
    if (bias) {
      if (compute_dtype != "default") {
        FBADtypeCheck(bias, "bias", compute_dtype);
        FBADtypeCheck(x, "x", compute_dtype);
      } else {
        PADDLE_ENFORCE_EQ(
            x.dtype(),
            bias.dtype(),
            phi::errors::InvalidArgument("Input(x) and Input(bias) must be the "
                                         "same dtype in this situation"));
      }
    } else {
      // bias not exist
      if (compute_dtype != "default") {
        FBADtypeCheck(x, "x", compute_dtype);
      }
    }
    if (out_scale > 0) {
      out->set_dtype(phi::DataType::INT8);
    } else {
      out->set_dtype(x.dtype());
    }
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
  }

  cache_kv_out->set_dims(cache_kv_dims);
  cache_kv_out->set_dtype(cache_kv.dtype());

  if (beam_cache_offset) {
    beam_cache_offset_out->set_dims(beam_cache_offset.dims());
    beam_cache_offset_out->set_dtype(beam_cache_offset.dtype());
  }
}

W
wanghuancoder 已提交
4266 4267 4268 4269 4270 4271 4272
void FullWithTensorInferMeta(const MetaTensor& shape,
                             DataType dtype,
                             MetaTensor* out) {
  out->set_dims(make_ddim({-1}));
  out->set_dtype(dtype);
}

4273
}  // namespace phi
4274
PD_REGISTER_INFER_META_FN(batch_norm_infer, phi::BatchNormInferInferMeta);