test_detection.py 19.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
20
import unittest
21 22


23
class TestDetection(unittest.TestCase):
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
39
                shape=[2, 10, 4],
40 41 42 43
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
44
                shape=[2, 10, 20],
45 46 47 48 49
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
50
            self.assertEqual(out.shape[-1], 6)
51
        print(str(program))
52

J
jerrywgz 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

99
        print(str(program))
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
123
        print(str(program))
124 125


126 127
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
144 145


R
ruri 已提交
146 147
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
164 165


166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


184 185
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
219
            outs = fluid.layers.generate_proposal_labels(
220 221 222 223 224 225 226 227 228 229 230 231
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
232 233 234 235 236
            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
237 238 239 240 241 242 243 244
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
245 246


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
303 304
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
305
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
306
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
307 308 309 310

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
311
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
312 313

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
314 315
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
316 317 318 319 320
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
321

C
chengduoZH 已提交
322
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
323 324
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
325
            num_classes=21,
C
chengduoZH 已提交
326 327 328 329 330 331 332
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
333

C
chengduoZH 已提交
334
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
335 336


337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

352
            map_out = layers.detection_map(detect_res, label, 21)
353 354
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
355
        print(str(program))
356 357


358 359 360 361
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
362 363
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
364 365
            anchor_shape = [50, 4]

366 367 368
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
369 370
                append_batch_size=False,
                dtype='float32')
371 372 373
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
374 375 376 377 378 379 380 381 382 383 384 385
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
386 387 388 389
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
390
                shape=[1, 10],
391 392 393 394 395 396 397 398 399
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
400
            outs = layers.rpn_target_assign(
401 402
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
403 404
                anchor_box=anchor_box,
                anchor_var=anchor_var,
405 406 407
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
408
                rpn_batch_size_per_im=256,
409 410
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
411
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
412 413
                rpn_negative_overlap=0.3,
                use_random=False)
414 415 416 417 418
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
419

420 421 422 423
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
424
            self.assertIsNotNone(bbox_inside_weight)
425 426 427
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
428
            print(str(program))
429 430


431 432
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        program = Program()
        with program_guard(program):
            data_shape = [20, 64, 64]
            images = fluid.layers.data(
                name='images', shape=data_shape, dtype='float32')
            im_info = fluid.layers.data(
                name='im_info', shape=[3], dtype='float32')
            anchors, variances = fluid.layers.anchor_generator(
                name='anchor_generator',
                input=images,
                anchor_sizes=[32, 64],
                aspect_ratios=[1.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
            num_anchors = anchors.shape[2]
            scores = fluid.layers.data(
                name='scores', shape=[num_anchors, 8, 8], dtype='float32')
            bbox_deltas = fluid.layers.data(
                name='bbox_deltas',
                shape=[num_anchors * 4, 8, 8],
                dtype='float32')
            rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
                name='generate_proposals',
                scores=scores,
                bbox_deltas=bbox_deltas,
                im_info=im_info,
                anchors=anchors,
                variances=variances,
                pre_nms_top_n=6000,
                post_nms_top_n=1000,
                nms_thresh=0.5,
                min_size=0.1,
                eta=1.0)
            self.assertIsNotNone(rpn_rois)
            self.assertIsNotNone(rpn_roi_probs)
            print(rpn_rois.shape)
470 471


D
dengkaipeng 已提交
472 473 474 475 476 477 478
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gtbox = layers.data(name='gtbox', shape=[10, 4], dtype='float32')
            gtlabel = layers.data(name='gtlabel', shape=[10], dtype='int32')
D
dengkaipeng 已提交
479
            gtscore = layers.data(name='gtscore', shape=[10], dtype='float32')
480 481 482 483 484 485 486 487 488
            loss = layers.yolov3_loss(
                x,
                gtbox,
                gtlabel, [10, 13, 30, 13], [0, 1],
                10,
                0.7,
                32,
                gtscore=gtscore,
                use_label_smooth=False)
D
dengkaipeng 已提交
489 490 491 492

            self.assertIsNotNone(loss)


J
jerrywgz 已提交
493 494 495 496 497 498 499 500 501 502
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
503

J
jerrywgz 已提交
504 505 506 507 508 509 510
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
511
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
512 513
            self.assertIsNotNone(output)

J
jerrywgz 已提交
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
class TestDistributeFpnProposals(unittest.TestCase):
    def test_distribute_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = layers.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)
            self.assertIsNotNone(multi_rois)
            self.assertIsNotNone(restore_ind)


531 532
if __name__ == '__main__':
    unittest.main()