clip.py 35.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
19
import warnings
F
fengjiayi 已提交
20

Y
Yu Yang 已提交
21
import functools
W
WangXi 已提交
22
import paddle
23 24
from . import layers
from . import framework
F
fengjiayi 已提交
25
from . import core
C
Chengmo 已提交
26
from . import name_scope
27
from .dygraph import base as imperative_base
W
WangXi 已提交
28
from .data_feeder import check_variable_and_dtype
29
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
W
WangXi 已提交
30
from .layer_helper import LayerHelper
31
from .framework import default_main_program
32
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
33

F
fengjiayi 已提交
34
__all__ = [
35 36 37 38 39
    'set_gradient_clip',
    'ErrorClipByValue',
    'ClipGradByValue',
    'ClipGradByNorm',
    'ClipGradByGlobalNorm',
F
fengjiayi 已提交
40
]
Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
_clip_by_global_norm_using_mp_type_flag = False


def _clip_by_global_norm_using_mp_type(*args):
    global _clip_by_global_norm_using_mp_type_flag
    assert len(args) <= 1
    if len(args) == 1:
        assert isinstance(args[0], bool)
        old_value = _clip_by_global_norm_using_mp_type_flag
        _clip_by_global_norm_using_mp_type_flag = args[0]
        return old_value
    else:
        return _clip_by_global_norm_using_mp_type_flag


def _cast_to_mp_type_if_enabled(x):
58 59 60 61
    if (
        x.dtype == core.VarDesc.VarType.FP16
        or x.dtype == core.VarDesc.VarType.BF16
    ) and _clip_by_global_norm_using_mp_type():
62 63 64 65
        return x.astype(core.VarDesc.VarType.FP32)
    else:
        return x

Y
Yu Yang 已提交
66

W
WangXi 已提交
67 68 69 70 71
def _squared_l2_norm(x):
    r"""
    This OP returns the squared L2 norm of a tensor.
    """

72
    x = _cast_to_mp_type_if_enabled(x)
73
    if core.is_compiled_with_xpu():
W
WangXi 已提交
74 75 76 77
        square = layers.square(x)
        sum_square = layers.reduce_sum(square)
        return sum_square

78
    if in_dygraph_mode():
79
        return _C_ops.squared_l2_norm(x)
80 81
    elif _in_legacy_dygraph():
        return _legacy_C_ops.squared_l2_norm(x)
W
WangXi 已提交
82 83

    op_type = 'squared_l2_norm'
84 85 86
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'float16', 'uint16'], op_type
    )
W
WangXi 已提交
87 88 89 90 91 92 93 94 95
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": x}
    outputs = {'Out': out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out


F
fengjiayi 已提交
96
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
97 98 99
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
100
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
101 102 103 104
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
105
    r"""
106 107
    Clips tensor values to the range [min, max].

108 109
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
110 111 112 113 114 115 116

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
117
        will be set to ``-max`` by framework.
118 119 120 121

    Examples:
        .. code-block:: python

122 123 124 125 126 127
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
128 129
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
130 131
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
132 133
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
134 135 136 137 138 139 140
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
141 142
    """

F
fengjiayi 已提交
143 144 145 146 147 148 149 150 151
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
152 153 154
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
155
    def _append_clip_op(self, block, grad_name):
156 157 158 159
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
160 161
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
162 163 164 165 166 167


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
168
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
169
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
170
        error_clip = getattr(fwd_var, "error_clip", None)
171 172 173
        if not (
            error_clip is None or isinstance(error_clip, BaseErrorClipAttr)
        ):
F
fengjiayi 已提交
174 175 176
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
177
        if error_clip is not None:
Y
yuyang18 已提交
178
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
179 180


181 182 183
class ClipGradBase(object):
    def __init__(self):
        super(ClipGradBase, self).__init__()
184

F
fengjiayi 已提交
185 186 187
    def __str__(self):
        raise NotImplementedError()

188
    @imperative_base.no_grad
189 190
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
191

192 193
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
194

195
    def __call__(self, params_grads):
J
Jiabin Yang 已提交
196
        if framework._non_static_mode():
197 198 199 200 201 202
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
203
                        "set 'need_clip' in 'ParamAttr'. So, 'set_gradient_clip' "
204 205
                        "is redundant and you can remove it."
                    )
206 207
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
208

Y
yuyang18 已提交
209
    def _process_context(self, context, param, grad):
210
        raise NotImplementedError()
Y
Yu Yang 已提交
211

Y
yuyang18 已提交
212
    def _create_operators(self, param, grad):
213
        raise NotImplementedError()
Y
Yu Yang 已提交
214 215


216
class ClipGradByValue(ClipGradBase):
217
    """
218
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
219

220
    - Any values less than min are set to ``min``.
221

222
    - Any values greater than max are set to ``max``.
223

224
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
225
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
226 227

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
228
    (for example: :ref:`api_paddle_optimizer_SGD`).
229 230

    Note:
231
        ``need_clip`` of ``ClipGradByValue`` HAS BEEN DEPRECATED since 2.0.
232
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
233

234 235
    Args:
        max (float): The maximum value to clip by.
236
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max``
237
            automatically. In this case, ``max`` must be greater than 0.
238 239 240

    Examples:
        .. code-block:: python
241

242
            import paddle
243

244
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
245 246
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
247
                                      bias_attr=paddle.ParamAttr(need_clip=False))
248 249 250 251
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

252
            clip = paddle.nn.ClipGradByValue(min=-1, max=1)
253 254
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
255 256
    """

257 258
    def __init__(self, max, min=None):
        super(ClipGradByValue, self).__init__()
Y
Yu Yang 已提交
259
        if min is None:
260
            assert max > 0.0
Y
Yu Yang 已提交
261
            min = -max
262 263
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
264

F
fengjiayi 已提交
265
    def __str__(self):
266
        return "Clip Gradient By Value, min = %f, max=%f" % (self.min, self.max)
267

268
    @imperative_base.no_grad
269 270 271 272 273
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
274
            if getattr(p, 'need_clip', True) is False:
275 276
                params_and_grads.append((p, g))
                continue
H
hong 已提交
277
            new_grad = paddle.clip(x=g, min=self.min, max=self.max)
278 279 280 281 282
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
283
        param_new_grad_name_dict = dict()
284 285 286 287
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
288
                if getattr(p, 'need_clip', True) is False:
289 290 291 292 293 294
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
295 296
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
297
        return params_and_grads
F
fengjiayi 已提交
298

Y
yuyang18 已提交
299
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
300 301
        pass

Y
yuyang18 已提交
302
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
303 304 305 306
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


307
class ClipGradByNorm(ClipGradBase):
308
    r"""
309 310 311 312 313 314
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
    
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
    
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
    
315 316
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
317
    
318
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
319
    (for example: :ref:`api_paddle_optimizer_SGD`).
320 321
    
    The clipping formula is:
322 323

    .. math::
324
        Out =
325 326 327 328 329 330
        \left\{
            \begin{array}{ccl}
                X & & if (norm(X) \leq clip\_norm) \\
                \frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\
        \end{array}
        \right.
331 332 333 334


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

335
    .. math::
336
        norm(X) = ( \sum_{i=1}^{n}|x\_i|^2)^{ \frac{1}{2}}
337

338 339 340 341
    Note:
        ``need_clip`` of ``ClipGradByNorm`` HAS BEEN DEPRECATED since 2.0. 
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

342
    Args:
343
        clip_norm(float): The maximum norm value.
C
Chengmo 已提交
344

345 346
    Examples:
        .. code-block:: python
347 348
        
            import paddle
349

350
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
351 352 353
            linear = paddle.nn.Linear(in_features=10, out_features=10, 
                                      weight_attr=paddle.ParamAttr(need_clip=True), 
                                      bias_attr=paddle.ParamAttr(need_clip=False))
354 355 356 357
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

358
            clip = paddle.nn.ClipGradByNorm(clip_norm=1.0)
359 360
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
361 362
    """

363 364
    def __init__(self, clip_norm):
        super(ClipGradByNorm, self).__init__()
365
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
366

F
fengjiayi 已提交
367
    def __str__(self):
368 369
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

370
    @imperative_base.no_grad
371 372 373 374 375
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
376
            if getattr(p, 'need_clip', True) is False:
377 378 379 380 381 382 383 384 385
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
386
            param_new_grad_name_dict = dict()
387 388 389
            for p, g in params_grads:
                if g is None:
                    continue
390
                if getattr(p, 'need_clip', True) is False:
391 392 393 394 395
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
396
                param_new_grad_name_dict[p.name] = new_grad.name
397
                params_and_grads.append((p, new_grad))
398
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
399
        return params_and_grads
F
fengjiayi 已提交
400

Y
yuyang18 已提交
401
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
402 403
        pass

Y
yuyang18 已提交
404
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
405 406 407 408
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


409 410 411 412 413 414 415 416 417 418 419 420 421 422
_allow_pure_fp16_global_norm_clip_flag = False


def _allow_pure_fp16_global_norm_clip(*args):
    global _allow_pure_fp16_global_norm_clip_flag
    if len(args) == 0:
        return _allow_pure_fp16_global_norm_clip_flag
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        old_value = _allow_pure_fp16_global_norm_clip_flag
        _allow_pure_fp16_global_norm_clip_flag = args[0]
        return old_value


423
class ClipGradByGlobalNorm(ClipGradBase):
424
    r"""
425
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in
426
    :math:`t\_list` , and limit it to ``clip_norm`` .
427

428
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
429

430
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
431

432 433
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
434 435

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
436
    (for example: :ref:`api_paddle_optimizer_SGD`).
437 438

    The clipping formula is:
439 440 441

    .. math::

442
        t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}
443 444 445 446 447 448 449

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

450
    Note:
451
        ``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0.
452 453
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

454
    Args:
455
        clip_norm (float): The maximum norm value.
456
        group_name (str, optional): The group name for this clip. Default value is ``default_group``.
457 458 459

    Examples:
        .. code-block:: python
460

461 462
            import paddle

463
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
464 465
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
466
                                      bias_attr=paddle.ParamAttr(need_clip=False))
467 468 469 470
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

471
            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
472 473
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
474 475
    """

476 477 478
    def __init__(
        self, clip_norm, group_name="default_group", auto_skip_clip=False
    ):
479
        super(ClipGradByGlobalNorm, self).__init__()
480
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
481
        self.group_name = group_name
482 483
        assert isinstance(auto_skip_clip, bool)
        self.auto_skip_clip = auto_skip_clip
484

F
fengjiayi 已提交
485
    def __str__(self):
486 487
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

488
    @imperative_base.no_grad
489 490 491
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
492 493
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
494 495 496
        for p, g in params_grads:
            if g is None:
                continue
497
            if getattr(p, 'need_clip', True) is False:
498 499
                continue
            merge_grad = g
500 501 502 503 504 505

            if in_dygraph_mode() and g.is_selected_rows():
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = merge_grad._get_tensor_from_selected_rows()

            elif g.type == core.VarDesc.VarType.SELECTED_ROWS:
506 507
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
W
WangXi 已提交
508 509

            sum_square = _squared_l2_norm(merge_grad)
510 511 512 513
            if (
                sum_square.dtype == core.VarDesc.VarType.FP16
                or sum_square.dtype == core.VarDesc.VarType.BF16
            ):
514 515 516 517 518
                sum_square_list_fp16.append(sum_square)
            elif sum_square.dtype == core.VarDesc.VarType.FP32:
                sum_square_list_fp32.append(sum_square)
            else:
                sum_square_list.append(sum_square)
519 520

        # all parameters have been filterd out
521 522 523 524 525 526
        if (
            len(sum_square_list)
            + len(sum_square_list_fp16)
            + len(sum_square_list_fp32)
            == 0
        ):
527 528
            return params_grads

529 530 531
        sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"
        global_norm_var = []
        if len(sum_square_list_fp16) > 0:
Z
zhangbo9674 已提交
532
            global_norm_var_fp16 = paddle.add_n(sum_square_list_fp16)
533 534
            global_norm_var.append(global_norm_var_fp16.astype(sum_dtype))
        if len(sum_square_list_fp32) > 0:
Z
zhangbo9674 已提交
535
            global_norm_var_fp32 = paddle.add_n(sum_square_list_fp32)
536 537 538 539 540
            if sum_dtype == 'float32':
                global_norm_var.append(global_norm_var_fp32)
            else:
                global_norm_var.append(global_norm_var_fp32.astype(sum_dtype))
        if len(sum_square_list) > 0:
Z
zhangbo9674 已提交
541
            global_norm_var_fp64 = paddle.add_n(sum_square_list)
542
            global_norm_var.append(global_norm_var_fp64)
Z
zhangbo9674 已提交
543
        global_norm_var = paddle.add_n(global_norm_var)
544
        global_norm_var = layers.sqrt(global_norm_var)
545 546 547
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
        )
Z
zhangbo9674 已提交
548 549

        need_clip = False
550 551
        if not self.auto_skip_clip:  # always apply clip
            need_clip = True
552 553 554 555
            clip_var = layers.elementwise_div(
                x=max_global_norm,
                y=layers.elementwise_max(x=global_norm_var, y=max_global_norm),
            )
556 557
        elif global_norm_var > max_global_norm:
            # only when global_norm_var > max_global_norm, grad need clip
Z
zhangbo9674 已提交
558
            need_clip = True
559 560 561
            clip_var = layers.elementwise_div(
                x=max_global_norm, y=global_norm_var
            )
562

563 564 565
        for p, g in params_grads:
            if g is None:
                continue
566
            if getattr(p, 'need_clip', True) is False:
567 568
                params_and_grads.append((p, g))
                continue
W
WangXi 已提交
569
            # TODO(wangxi): use inplace elementwise_mul
Z
zhangbo9674 已提交
570
            if need_clip:
571 572 573 574 575
                clip_input = (
                    clip_var.astype(g.dtype)
                    if clip_var.dtype != g.dtype
                    else clip_var
                )
576
                new_grad = layers.elementwise_mul(g, clip_input)
Z
zhangbo9674 已提交
577 578 579
                params_and_grads.append((p, new_grad))
            else:
                params_and_grads.append((p, g))
580 581 582 583 584 585

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
586 587
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
588 589 590 591
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
592
                if getattr(p, 'need_clip', True) is False:
593 594 595 596 597 598
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
599 600
                            merge_grad
                        )
W
WangXi 已提交
601
                    sum_square = _squared_l2_norm(merge_grad)
602 603 604 605 606 607
                    if sum_square.dtype == core.VarDesc.VarType.FP16:
                        sum_square_list_fp16.append(sum_square)
                    elif sum_square.dtype == core.VarDesc.VarType.FP32:
                        sum_square_list_fp32.append(sum_square)
                    else:
                        sum_square_list.append(sum_square)
608 609

            # all parameters have been filterd out
610 611 612 613 614 615
            if (
                len(sum_square_list)
                + len(sum_square_list_fp16)
                + len(sum_square_list_fp32)
                == 0
            ):
616 617 618
                return params_grads

            with p.block.program._optimized_guard([p, g]):
619 620 621 622 623
                sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"

                global_norm_var = []
                if len(sum_square_list_fp16) > 0:
                    global_norm_var_fp16 = layers.sums(sum_square_list_fp16)
624 625 626 627
                    if (
                        sum_square_list_fp32
                        or sum_square_list
                        or not _allow_pure_fp16_global_norm_clip()
628 629
                    ):
                        global_norm_var.append(
630 631
                            global_norm_var_fp16.astype(sum_dtype)
                        )
632 633
                    else:
                        global_norm_var.append(global_norm_var_fp16)
634 635 636 637 638 639
                if len(sum_square_list_fp32) > 0:
                    global_norm_var_fp32 = layers.sums(sum_square_list_fp32)
                    if sum_dtype == 'float32':
                        global_norm_var.append(global_norm_var_fp32)
                    else:
                        global_norm_var.append(
640 641
                            global_norm_var_fp32.astype(sum_dtype)
                        )
642 643 644 645
                if len(sum_square_list) > 0:
                    # fp64
                    global_norm_var_other_dtype = layers.sums(sum_square_list)
                    global_norm_var.append(global_norm_var_other_dtype)
646

647 648 649 650 651
                global_norm_var = (
                    layers.sums(global_norm_var)
                    if len(global_norm_var) > 1
                    else global_norm_var[0]
                )
652 653
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
654 655 656 657 658 659 660 661
                    shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
                )
                scale_var = layers.elementwise_div(
                    x=max_global_norm,
                    y=layers.elementwise_max(
                        x=max_global_norm, y=global_norm_var
                    ),
                )
662
            param_new_grad_name_dict = dict()
663 664 665
            for p, g in params_grads:
                if g is None:
                    continue
666
                if getattr(p, 'need_clip', True) is False:
667 668 669 670
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
671
                    new_g = _cast_to_mp_type_if_enabled(g)
W
WangXi 已提交
672
                    # inplace
673 674 675 676 677 678
                    scale_input = (
                        scale_var.astype('float16')
                        if new_g.dtype == core.VarDesc.VarType.FP16
                        and scale_var.dtype != core.VarDesc.VarType.FP16
                        else scale_var
                    )
679 680 681 682 683
                    # NOTE(Yuang Liu): For pure dp with gradient merge, the p and g
                    # will be in different blocks with the gradient clip related ops.
                    # We need to handle the correct block, otherwise will encounter
                    # a 'NotFoundError' during compile time.
                    block = default_main_program().current_block()
684 685 686 687 688
                    block.append_op(
                        type='elementwise_mul',
                        inputs={'X': new_g, 'Y': scale_input},
                        outputs={'Out': new_g},
                    )
689
                    if new_g is not g:
690 691 692 693 694 695 696 697 698
                        block.append_op(
                            type='cast',
                            inputs={'X': new_g},
                            outputs={'Out': g},
                            attrs={
                                'in_dtype': new_g.dtype,
                                'out_dtype': g.dtype,
                            },
                        )
699

W
WangXi 已提交
700 701
                param_new_grad_name_dict[p.name] = g.name
                params_and_grads.append((p, g))
702

703
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
704
        return params_and_grads
F
fengjiayi 已提交
705

Y
yuyang18 已提交
706
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
707 708 709 710
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
711 712
                shape=[1], dtype=grad.dtype, value=self.clip_norm
            )
F
update  
fengjiayi 已提交
713 714 715 716 717
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
718

C
chengduo 已提交
719 720 721 722 723
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

W
WangXi 已提交
724
        local_norm_var = _squared_l2_norm(merge_grad)
F
update  
fengjiayi 已提交
725
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
726

F
update  
fengjiayi 已提交
727
        self.context = context
728

Y
yuyang18 已提交
729
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
730 731 732
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
733
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
734
            clip_var = self.context[self.group_name + "_clip"]
735 736 737 738 739
            group_scale_var = layers.elementwise_div(
                x=clip_var,
                y=layers.elementwise_max(x=clip_var, y=group_norm_var),
            )
            assert group_scale_var.shape == (1,)
F
update  
fengjiayi 已提交
740
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
741

W
WangXi 已提交
742
        # inplace
743 744 745 746 747
        param.block.append_op(
            type='elementwise_mul',
            inputs={'X': grad, 'Y': self.context[group_scale_name]},
            outputs={'Out': grad},
        )
C
chengduo 已提交
748

W
WangXi 已提交
749
        return param, grad
F
fengjiayi 已提交
750 751


752
@framework.dygraph_not_support
F
fengjiayi 已提交
753
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
754
    """
755
    :api_attr: Static Graph
756

757
    Warning:
758 759 760

        This API must be used after building network, and before ``minimize`` ,
        and it may be removed in future releases, so it is not recommended.
761 762
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
763
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
764
         :ref:`api_fluid_clip_GradientClipByValue` .
765

766 767 768
    To specify parameters that require gradient clip.

    Args:
769 770 771 772
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no
773
            gradient clipping.
Z
Zeng Jinle 已提交
774
        param_list (list(Variable), optional): Parameters that require gradient clip.
775
                It can be a list of parameter or a list of parameter's name.
776
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
777
        program (Program, optional): The program where parameters are located.
778 779 780 781 782 783 784
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
785

786 787 788
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
789 790
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

816
            # network 3: clip parameter gradient by value
817 818 819 820 821 822 823 824 825
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
826

827
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
828 829 830 831 832 833 834
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
835 836
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
837
                # 'set_gradient_clip' will not take effect when setting has a conflict,
838
                # and the gradient clipping strategy will be 'clip2'
839 840


F
fengjiayi 已提交
841
    """
842 843 844 845 846 847 848 849
    warnings.warn(
        "Caution! 'set_gradient_clip' is not recommended "
        "and may be deprecated in future! "
        "We recommend a new strategy: set 'grad_clip' "
        "when initializing the 'optimizer'. "
        "This method can reduce the mistakes, please "
        "refer to documention of 'optimizer'."
    )
850

851
    if not isinstance(clip, ClipGradBase):
F
fengjiayi 已提交
852
        raise TypeError(
853 854
            "'clip' should be an instance of ClipGradBase's derived class"
        )
F
fengjiayi 已提交
855 856
    if program is None:
        program = framework.default_main_program()
857 858 859

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
860 861
            "op_namescope"
        ):
862 863 864 865 866 867
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
868 869
    if param_list is None:
        param_list = program.block(0).all_parameters()
870
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
871 872 873 874 875 876 877
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
878
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
879 880


881
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
882
    context = dict()
883 884 885
    for p, g in param_grads:
        if g is None:
            continue
886 887 888
        with p.block.program._optimized_guard([p, g]), framework.name_scope(
            'gradient_clip'
        ):
889
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
890
            if clip_attr is None:
891
                return param_grads
892
            if not isinstance(clip_attr, ClipGradBase):
Y
yuyang18 已提交
893
                raise TypeError(
894 895
                    "clip attribute should be an instance of GradientClipBase"
                )
Y
Yu Yang 已提交
896

Y
yuyang18 已提交
897
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
898 899

    res = []
900
    param_new_grad_name_dict = dict()
901 902 903
    for p, g in param_grads:
        if g is None:
            continue
904 905 906
        with p.block.program._optimized_guard([p, g]), framework.name_scope(
            'gradient_clip'
        ):
907
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
908
            param_new_grad_name_dict[param.name] = new_grad.name
909
            res.append([param, new_grad])
Y
Yu Yang 已提交
910

911
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
912 913 914 915
    return res


# change wrong mapping relation between param & grad in clip op
916
# Note: This function is sensitive to the time cost of the network with gradient clipping
917
# and should not be changed easily. If you must change, please test the time cost.
918 919 920 921
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
922 923
    for param, grad in params_grads:
        if grad is None:
924
            continue
925 926 927 928
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
929
        for op in param.block.program.global_block().ops:
930 931 932 933 934
            if (
                op.has_attr("op_namescope")
                and "gradient_clip" in op.attr("op_namescope")
                and op.attr('op_role_var')
            ):
935 936 937
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
938 939
                        param_name,
                        param_new_grad_name_dict[param_name],
940
                    ]
C
Chengmo 已提交
941
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
942 943


944 945 946 947
GradientClipBase = ClipGradBase
GradientClipByValue = ClipGradByValue
GradientClipByNorm = ClipGradByNorm
GradientClipByGlobalNorm = ClipGradByGlobalNorm