test_detection.py 38.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17
import unittest

18 19
import numpy as np
from unittests.test_imperative_base import new_program_scope
20

P
pangyoki 已提交
21
import paddle
22 23 24 25 26 27
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import core
from paddle.fluid.dygraph import base
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.layers import detection
P
pangyoki 已提交
28 29

paddle.enable_static()
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

57 58 59
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
60 61
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
        exe.run(fluid.default_startup_program())
62 63 64 65 66 67
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
68 69 70 71

    @contextlib.contextmanager
    def dynamic_graph(self, force_to_use_cpu=False):
        with fluid.dygraph.guard(
72 73
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
74 75 76
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield
77 78


79
class TestDetection(unittest.TestCase):
80 81 82
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            loc = layers.data(
                name='target_box',
                shape=[2, 10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[2, 10, 20],
                append_batch_size=False,
                dtype='float32',
            )
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv
            )
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True,
            )
117
            self.assertIsNotNone(out)
118 119
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
120
            self.assertEqual(out.shape[-1], 6)
121
        print(str(program))
122

J
jerrywgz 已提交
123 124 125 126 127
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
128 129 130 131 132 133
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size',
            )
J
jerrywgz 已提交
134 135 136
            self.assertIsNotNone(bcoder)
        print(str(program))

137 138 139 140
    def test_box_coder_error(self):
        program = Program()
        with program_guard(program):
            x1 = fluid.data(name='x1', shape=[10, 4], dtype='int32')
141 142 143
            y1 = fluid.data(
                name='y1', shape=[10, 4], dtype='float32', lod_level=1
            )
144
            x2 = fluid.data(name='x2', shape=[10, 4], dtype='float32')
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            y2 = fluid.data(
                name='y2', shape=[10, 4], dtype='int32', lod_level=1
            )

            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x1,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y1,
                code_type='encode_center_size',
            )
            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x2,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y2,
                code_type='encode_center_size',
            )
165

166 167 168 169 170 171 172
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
173 174 175 176 177 178
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size',
            )
179 180 181 182 183 184 185
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

186 187 188 189 190 191
            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1
            )
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0
            )
192 193 194
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

195 196 197 198 199 200
            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1
            )
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0
            )
201 202 203
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

204
        print(str(program))
205 206 207 208

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
209 210 211 212 213 214 215 216 217 218 219 220
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
221 222
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
223 224 225 226 227 228
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32'
            )
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32'
            )
229 230 231
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
232
        print(str(program))
233 234


235 236
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
237 238 239
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
240 241 242
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32'
            )
243
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
244 245 246 247 248 249 250 251
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.0],
                flip=True,
                clip=True,
            )
252 253 254 255 256 257 258 259 260 261 262 263
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
    def test_prior_box(self):
        program = Program()
        with program_guard(program):
            data_shape = [None, 3, None, None]
            images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
264 265 266 267 268 269 270 271
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.0],
                flip=True,
                clip=True,
            )
272 273 274
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
275 276


R
ruri 已提交
277 278
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
279 280 281
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
282 283 284
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32'
            )
285
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
286 287 288 289 290 291 292 293
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50.0, 60.0],
                fixed_ratios=[1.0],
                clip=True,
            )
294 295 296
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
297 298


299 300 301
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
302 303 304
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32'
        )
305 306 307 308 309 310 311
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
312 313
            offset=0.5,
        )
314 315 316 317 318
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


319
class TestGenerateProposalLabels(unittest.TestCase):
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    def check_out(self, outs):
        rois = outs[0]
        labels_int32 = outs[1]
        bbox_targets = outs[2]
        bbox_inside_weights = outs[3]
        bbox_outside_weights = outs[4]
        assert rois.shape[1] == 4
        assert rois.shape[0] == labels_int32.shape[0]
        assert rois.shape[0] == bbox_targets.shape[0]
        assert rois.shape[0] == bbox_inside_weights.shape[0]
        assert rois.shape[0] == bbox_outside_weights.shape[0]
        assert bbox_targets.shape[1] == 4 * self.class_nums
        assert bbox_inside_weights.shape[1] == 4 * self.class_nums
        assert bbox_outside_weights.shape[1] == 4 * self.class_nums
        if len(outs) == 6:
            max_overlap_with_gt = outs[5]
            assert max_overlap_with_gt.shape[0] == rois.shape[0]

338
    def test_generate_proposal_labels(self):
339 340
        program = Program()
        with program_guard(program):
341 342 343 344 345 346 347 348 349 350 351 352
            rpn_rois = fluid.data(
                name='rpn_rois', shape=[4, 4], dtype='float32', lod_level=1
            )
            gt_classes = fluid.data(
                name='gt_classes', shape=[6], dtype='int32', lod_level=1
            )
            is_crowd = fluid.data(
                name='is_crowd', shape=[6], dtype='int32', lod_level=1
            )
            gt_boxes = fluid.data(
                name='gt_boxes', shape=[6, 4], dtype='float32', lod_level=1
            )
353
            im_info = fluid.data(name='im_info', shape=[1, 3], dtype='float32')
354 355 356
            max_overlap = fluid.data(
                name='max_overlap', shape=[4], dtype='float32', lod_level=1
            )
357
            self.class_nums = 5
358
            outs = fluid.layers.generate_proposal_labels(
359 360 361 362 363 364 365 366 367 368 369
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
370 371
                class_nums=self.class_nums,
            )
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            outs_1 = fluid.layers.generate_proposal_labels(
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=self.class_nums,
                is_cascade_rcnn=True,
                max_overlap=max_overlap,
387 388
                return_max_overlap=True,
            )
389 390 391

            self.check_out(outs)
            self.check_out(outs_1)
392
            rois = outs[0]
393 394


395 396 397 398
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False,
            )
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
441 442
            num_classes = 5
            resolution = 14
443 444 445 446 447 448 449 450 451 452
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution,
            )
453 454 455 456 457
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
458 459
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
460
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
461
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
462 463 464 465

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
466
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
467 468

    def multi_box_head_output(self, data_shape):
469 470 471
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32'
        )
472 473 474 475 476
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
477

C
chengduoZH 已提交
478
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
479 480
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
481
            num_classes=21,
C
chengduoZH 已提交
482 483
            min_ratio=20,
            max_ratio=90,
484 485 486 487 488 489 490 491
            aspect_ratios=[
                [2.0],
                [2.0, 3.0],
                [2.0, 3.0],
                [2.0, 3.0],
                [2.0],
                [2.0],
            ],
C
chengduoZH 已提交
492 493 494
            base_size=300,
            offset=0.5,
            flip=True,
495 496
            clip=True,
        )
C
chengduoZH 已提交
497

C
chengduoZH 已提交
498
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
499 500


501 502 503 504
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
505 506 507 508 509 510 511 512 513 514 515 516
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
517

518
            map_out = detection.detection_map(detect_res, label, 21)
519
            self.assertIsNotNone(map_out)
520
            self.assertEqual(map_out.shape, (1,))
521
        print(str(program))
522 523


524 525 526 527
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
528 529
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
530 531
            anchor_shape = [50, 4]

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32'
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1, 10],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            outs = layers.rpn_target_assign(
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
                anchor_box=anchor_box,
                anchor_var=anchor_var,
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
                rpn_batch_size_per_im=256,
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
                rpn_positive_overlap=0.7,
                rpn_negative_overlap=0.3,
                use_random=False,
            )
588 589 590 591 592
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
593

594 595 596 597
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
598
            self.assertIsNotNone(bbox_inside_weight)
599 600 601
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
602
            print(str(program))
603 604


605
class TestGenerateProposals(LayerTest):
606
    def test_generate_proposals(self):
607 608 609
        scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
        bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
        im_info_np = np.array([[8, 8, 0.5], [6, 6, 0.5]]).astype('float32')
610 611 612
        anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4), [4, 4, 3, 4]).astype(
            'float32'
        )
613 614 615
        variances_np = np.ones((4, 4, 3, 4)).astype('float32')

        with self.static_graph():
616 617 618 619 620 621
            scores = fluid.data(
                name='scores', shape=[2, 3, 4, 4], dtype='float32'
            )
            bbox_deltas = fluid.data(
                name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32'
            )
622
            im_info = fluid.data(name='im_info', shape=[2, 3], dtype='float32')
623 624 625 626 627 628
            anchors = fluid.data(
                name='anchors', shape=[4, 4, 3, 4], dtype='float32'
            )
            variances = fluid.data(
                name='var', shape=[4, 4, 3, 4], dtype='float32'
            )
629 630 631 632 633 634 635 636
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores,
                bbox_deltas,
                im_info,
                anchors,
                variances,
                pre_nms_top_n=10,
                post_nms_top_n=5,
637 638 639 640 641 642 643
                return_rois_num=True,
            )
            (
                rois_stat,
                roi_probs_stat,
                rois_num_stat,
            ) = self.get_static_graph_result(
644 645 646 647 648
                feed={
                    'scores': scores_np,
                    'bbox_deltas': bbox_deltas_np,
                    'im_info': im_info_np,
                    'anchors': anchors_np,
649
                    'var': variances_np,
650 651
                },
                fetch_list=[rois, roi_probs, rois_num],
652 653
                with_lod=False,
            )
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

        with self.dynamic_graph():
            scores_dy = base.to_variable(scores_np)
            bbox_deltas_dy = base.to_variable(bbox_deltas_np)
            im_info_dy = base.to_variable(im_info_np)
            anchors_dy = base.to_variable(anchors_np)
            variances_dy = base.to_variable(variances_np)
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores_dy,
                bbox_deltas_dy,
                im_info_dy,
                anchors_dy,
                variances_dy,
                pre_nms_top_n=10,
                post_nms_top_n=5,
669 670
                return_rois_num=True,
            )
671 672 673 674
            rois_dy = rois.numpy()
            roi_probs_dy = roi_probs.numpy()
            rois_num_dy = rois_num.numpy()

675 676 677
        np.testing.assert_array_equal(np.array(rois_stat), rois_dy)
        np.testing.assert_array_equal(np.array(roi_probs_stat), roi_probs_dy)
        np.testing.assert_array_equal(np.array(rois_num_stat), rois_num_dy)
678 679


D
dengkaipeng 已提交
680 681 682 683 684
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
685 686 687
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
688 689 690 691 692 693 694 695 696 697 698 699
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label,
                [10, 13, 30, 13],
                [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
            )
D
dengkaipeng 已提交
700 701 702

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
703 704 705 706
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
707
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
708 709 710
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32
            )
D
dengkaipeng 已提交
711 712 713
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

714 715 716 717 718 719 720
    def test_yolov3_loss_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
721 722 723 724 725 726 727 728 729 730 731 732 733
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label,
                [10, 13, 30, 13],
                [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
                scale_x_y=1.2,
            )
734 735 736 737 738 739 740 741

            self.assertIsNotNone(loss)

    def test_yolo_box_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
742 743 744
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=1.2
            )
745 746 747
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
748

J
jerrywgz 已提交
749 750 751 752
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
753 754 755
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1
            )
J
jerrywgz 已提交
756 757 758 759
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
760

J
jerrywgz 已提交
761 762 763 764
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
765 766 767
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32'
            )
J
jerrywgz 已提交
768
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
769
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
770 771
            self.assertIsNotNone(output)

772 773 774
    def test_multiclass_nms_error(self):
        program = Program()
        with program_guard(program):
775 776 777 778 779 780 781 782 783
            bboxes1 = fluid.data(
                name='bboxes1', shape=[10, 10, 4], dtype='int32'
            )
            scores1 = fluid.data(
                name='scores1', shape=[10, 10], dtype='float32'
            )
            bboxes2 = fluid.data(
                name='bboxes2', shape=[10, 10, 4], dtype='float32'
            )
784
            scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes1,
                scores=scores1,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200,
            )
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes2,
                scores=scores2,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200,
            )
803

J
jerrywgz 已提交
804

805 806 807 808
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
809 810 811
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32'
            )
812
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
813 814 815 816 817 818
            output = fluid.contrib.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7
            )
            output2, index = fluid.contrib.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True
            )
819 820 821 822 823
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


824
class TestCollectFpnPropsals(LayerTest):
825
    def test_collect_fpn_proposals(self):
826 827 828 829 830 831 832 833 834 835 836 837
        multi_bboxes_np = []
        multi_scores_np = []
        rois_num_per_level_np = []
        for i in range(4):
            bboxes_np = np.random.rand(5, 4).astype('float32')
            scores_np = np.random.rand(5, 1).astype('float32')
            rois_num = np.array([2, 3]).astype('int32')
            multi_bboxes_np.append(bboxes_np)
            multi_scores_np.append(scores_np)
            rois_num_per_level_np.append(rois_num)

        with self.static_graph():
838 839
            multi_bboxes = []
            multi_scores = []
840
            rois_num_per_level = []
841
            for i in range(4):
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
                bboxes = fluid.data(
                    name='rois' + str(i),
                    shape=[5, 4],
                    dtype='float32',
                    lod_level=1,
                )
                scores = fluid.data(
                    name='scores' + str(i),
                    shape=[5, 1],
                    dtype='float32',
                    lod_level=1,
                )
                rois_num = fluid.data(
                    name='rois_num' + str(i), shape=[None], dtype='int32'
                )
857

858 859
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
860 861 862 863 864 865 866 867
                rois_num_per_level.append(rois_num)

            fpn_rois, rois_num = layers.collect_fpn_proposals(
                multi_bboxes,
                multi_scores,
                2,
                5,
                10,
868 869
                rois_num_per_level=rois_num_per_level,
            )
870 871 872 873 874 875
            feed = {}
            for i in range(4):
                feed['rois' + str(i)] = multi_bboxes_np[i]
                feed['scores' + str(i)] = multi_scores_np[i]
                feed['rois_num' + str(i)] = rois_num_per_level_np[i]
            fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
876 877
                feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True
            )
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
            fpn_rois_stat = np.array(fpn_rois_stat)
            rois_num_stat = np.array(rois_num_stat)

        with self.dynamic_graph():
            multi_bboxes_dy = []
            multi_scores_dy = []
            rois_num_per_level_dy = []
            for i in range(4):
                bboxes_dy = base.to_variable(multi_bboxes_np[i])
                scores_dy = base.to_variable(multi_scores_np[i])
                rois_num_dy = base.to_variable(rois_num_per_level_np[i])
                multi_bboxes_dy.append(bboxes_dy)
                multi_scores_dy.append(scores_dy)
                rois_num_per_level_dy.append(rois_num_dy)
            fpn_rois_dy, rois_num_dy = fluid.layers.collect_fpn_proposals(
                multi_bboxes_dy,
                multi_scores_dy,
                2,
                5,
                10,
898 899
                rois_num_per_level=rois_num_per_level_dy,
            )
900 901 902
            fpn_rois_dy = fpn_rois_dy.numpy()
            rois_num_dy = rois_num_dy.numpy()

903 904
        np.testing.assert_array_equal(fpn_rois_stat, fpn_rois_dy)
        np.testing.assert_array_equal(rois_num_stat, rois_num_dy)
905

906 907 908 909 910
    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
911 912 913 914 915 916 917 918 919 920 921 922
                bboxes = fluid.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1,
                )
                scores = fluid.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1,
                )
923 924 925 926 927 928
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        program = Program()
        with program_guard(program):
929 930 931 932 933 934
            bbox1 = fluid.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1
            )
            score1 = fluid.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1
            )
935
            bbox2, score2 = generate_input('int32', 'float32', '2')
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000,
            )
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000,
            )
954

955

956
class TestDistributeFpnProposals(LayerTest):
957
    def test_distribute_fpn_proposals(self):
958 959 960 961 962
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = fluid.data(name='rois', shape=[10, 4], dtype='float32')
            rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
963 964 965 966 967
            (
                multi_rois,
                restore_ind,
                rois_num_per_level,
            ) = layers.distribute_fpn_proposals(
968 969 970 971 972
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
973 974
                rois_num=rois_num,
            )
975
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
976 977 978 979 980
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True,
            )
981 982 983 984 985 986 987 988 989
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
990 991 992 993 994
            (
                multi_rois_dy,
                restore_ind_dy,
                rois_num_per_level_dy,
            ) = layers.distribute_fpn_proposals(
995
                fpn_rois=rois_dy,
996 997 998
                min_level=2,
                max_level=5,
                refer_level=4,
999
                refer_scale=224,
1000 1001
                rois_num=rois_num_dy,
            )
H
hong 已提交
1002
            print(type(multi_rois_dy))
1003 1004 1005 1006 1007 1008 1009 1010
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
1011
            np.testing.assert_array_equal(res_stat, res_dy)
1012

1013 1014 1015
    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            fpn_rois = fluid.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1
            )
            self.assertRaises(
                TypeError,
                layers.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
            )
1028 1029 1030 1031 1032 1033 1034 1035


class TestBoxDecoderAndAssign(unittest.TestCase):
    def test_box_decoder_and_assign(self):
        program = Program()
        with program_guard(program):
            pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
            loc = fluid.data(
                name='target_box', shape=[None, 4 * 81], dtype='float32'
            )
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32'
            )
            (
                decoded_box,
                output_assign_box,
            ) = fluid.layers.box_decoder_and_assign(pb, pbv, loc, scores, 4.135)
1046 1047 1048 1049 1050
            self.assertIsNotNone(decoded_box)
            self.assertIsNotNone(output_assign_box)

    def test_box_decoder_and_assign_error(self):
        def generate_input(pb_type, pbv_type, loc_type, score_type, name):
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            pb = fluid.data(
                name='prior_box' + name, shape=[None, 4], dtype=pb_type
            )
            pbv = fluid.data(
                name='prior_box_var' + name, shape=[4], dtype=pbv_type
            )
            loc = fluid.data(
                name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type
            )
            scores = fluid.data(
                name='scores' + name, shape=[None, 81], dtype=score_type
            )
1063 1064 1065 1066
            return pb, pbv, loc, scores

        program = Program()
        with program_guard(program):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
            pb1, pbv1, loc1, scores1 = generate_input(
                'int32', 'float32', 'float32', 'float32', '1'
            )
            pb2, pbv2, loc2, scores2 = generate_input(
                'float32', 'float32', 'int32', 'float32', '2'
            )
            pb3, pbv3, loc3, scores3 = generate_input(
                'float32', 'float32', 'float32', 'int32', '3'
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb1,
                prior_box_var=pbv1,
                target_box=loc1,
                box_score=scores1,
                box_clip=4.0,
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb2,
                prior_box_var=pbv2,
                target_box=loc2,
                box_score=scores2,
                box_clip=4.0,
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb3,
                prior_box_var=pbv3,
                target_box=loc3,
                box_score=scores3,
                box_clip=4.0,
            )
1103

1104

1105
if __name__ == '__main__':
H
hong 已提交
1106
    paddle.enable_static()
1107
    unittest.main()