test_detection.py 38.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle.fluid as fluid
import paddle.fluid.layers as layers
17
from paddle.fluid.layers import detection
18
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
19
import unittest
20 21 22 23 24
import contextlib
import numpy as np
from unittests.test_imperative_base import new_program_scope
from paddle.fluid.dygraph import base
from paddle.fluid import core
P
pangyoki 已提交
25 26 27
import paddle

paddle.enable_static()
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

55 56 57
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
58 59
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
        exe.run(fluid.default_startup_program())
60 61 62 63 64 65
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
66 67 68 69

    @contextlib.contextmanager
    def dynamic_graph(self, force_to_use_cpu=False):
        with fluid.dygraph.guard(
70 71
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
72 73 74
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield
75 76


77
class TestDetection(unittest.TestCase):
78 79 80
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            loc = layers.data(
                name='target_box',
                shape=[2, 10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[2, 10, 20],
                append_batch_size=False,
                dtype='float32',
            )
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv
            )
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True,
            )
115
            self.assertIsNotNone(out)
116 117
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
118
            self.assertEqual(out.shape[-1], 6)
119
        print(str(program))
120

J
jerrywgz 已提交
121 122 123 124 125
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
126 127 128 129 130 131
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size',
            )
J
jerrywgz 已提交
132 133 134
            self.assertIsNotNone(bcoder)
        print(str(program))

135 136 137 138
    def test_box_coder_error(self):
        program = Program()
        with program_guard(program):
            x1 = fluid.data(name='x1', shape=[10, 4], dtype='int32')
139 140 141
            y1 = fluid.data(
                name='y1', shape=[10, 4], dtype='float32', lod_level=1
            )
142
            x2 = fluid.data(name='x2', shape=[10, 4], dtype='float32')
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
            y2 = fluid.data(
                name='y2', shape=[10, 4], dtype='int32', lod_level=1
            )

            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x1,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y1,
                code_type='encode_center_size',
            )
            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x2,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y2,
                code_type='encode_center_size',
            )
163

164 165 166 167 168 169 170
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
171 172 173 174 175 176
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size',
            )
177 178 179 180 181 182 183
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

184 185 186 187 188 189
            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1
            )
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0
            )
190 191 192
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

193 194 195 196 197 198
            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1
            )
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0
            )
199 200 201
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

202
        print(str(program))
203 204 205 206

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
207 208 209 210 211 212 213 214 215 216 217 218
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
219 220
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
221 222 223 224 225 226
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32'
            )
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32'
            )
227 228 229
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
230
        print(str(program))
231 232


233 234
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
235 236 237
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
238 239 240
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32'
            )
241
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
242 243 244 245 246 247 248 249
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.0],
                flip=True,
                clip=True,
            )
250 251 252 253 254 255 256 257 258 259 260 261
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
    def test_prior_box(self):
        program = Program()
        with program_guard(program):
            data_shape = [None, 3, None, None]
            images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
262 263 264 265 266 267 268 269
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.0],
                flip=True,
                clip=True,
            )
270 271 272
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
273 274


R
ruri 已提交
275 276
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
277 278 279
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
280 281 282
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32'
            )
283
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
284 285 286 287 288 289 290 291
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50.0, 60.0],
                fixed_ratios=[1.0],
                clip=True,
            )
292 293 294
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
295 296


297 298 299
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
300 301 302
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32'
        )
303 304 305 306 307 308 309
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
310 311
            offset=0.5,
        )
312 313 314 315 316
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


317
class TestGenerateProposalLabels(unittest.TestCase):
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    def check_out(self, outs):
        rois = outs[0]
        labels_int32 = outs[1]
        bbox_targets = outs[2]
        bbox_inside_weights = outs[3]
        bbox_outside_weights = outs[4]
        assert rois.shape[1] == 4
        assert rois.shape[0] == labels_int32.shape[0]
        assert rois.shape[0] == bbox_targets.shape[0]
        assert rois.shape[0] == bbox_inside_weights.shape[0]
        assert rois.shape[0] == bbox_outside_weights.shape[0]
        assert bbox_targets.shape[1] == 4 * self.class_nums
        assert bbox_inside_weights.shape[1] == 4 * self.class_nums
        assert bbox_outside_weights.shape[1] == 4 * self.class_nums
        if len(outs) == 6:
            max_overlap_with_gt = outs[5]
            assert max_overlap_with_gt.shape[0] == rois.shape[0]

336
    def test_generate_proposal_labels(self):
337 338
        program = Program()
        with program_guard(program):
339 340 341 342 343 344 345 346 347 348 349 350
            rpn_rois = fluid.data(
                name='rpn_rois', shape=[4, 4], dtype='float32', lod_level=1
            )
            gt_classes = fluid.data(
                name='gt_classes', shape=[6], dtype='int32', lod_level=1
            )
            is_crowd = fluid.data(
                name='is_crowd', shape=[6], dtype='int32', lod_level=1
            )
            gt_boxes = fluid.data(
                name='gt_boxes', shape=[6, 4], dtype='float32', lod_level=1
            )
351
            im_info = fluid.data(name='im_info', shape=[1, 3], dtype='float32')
352 353 354
            max_overlap = fluid.data(
                name='max_overlap', shape=[4], dtype='float32', lod_level=1
            )
355
            self.class_nums = 5
356
            outs = fluid.layers.generate_proposal_labels(
357 358 359 360 361 362 363 364 365 366 367
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
368 369
                class_nums=self.class_nums,
            )
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
            outs_1 = fluid.layers.generate_proposal_labels(
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=self.class_nums,
                is_cascade_rcnn=True,
                max_overlap=max_overlap,
385 386
                return_max_overlap=True,
            )
387 388 389

            self.check_out(outs)
            self.check_out(outs_1)
390
            rois = outs[0]
391 392


393 394 395 396
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False,
            )
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
439 440
            num_classes = 5
            resolution = 14
441 442 443 444 445 446 447 448 449 450
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution,
            )
451 452 453 454 455
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
456 457
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
458
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
459
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
460 461 462 463

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
464
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
465 466

    def multi_box_head_output(self, data_shape):
467 468 469
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32'
        )
470 471 472 473 474
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
475

C
chengduoZH 已提交
476
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
477 478
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
479
            num_classes=21,
C
chengduoZH 已提交
480 481
            min_ratio=20,
            max_ratio=90,
482 483 484 485 486 487 488 489
            aspect_ratios=[
                [2.0],
                [2.0, 3.0],
                [2.0, 3.0],
                [2.0, 3.0],
                [2.0],
                [2.0],
            ],
C
chengduoZH 已提交
490 491 492
            base_size=300,
            offset=0.5,
            flip=True,
493 494
            clip=True,
        )
C
chengduoZH 已提交
495

C
chengduoZH 已提交
496
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
497 498


499 500 501 502
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
503 504 505 506 507 508 509 510 511 512 513 514
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
515

516
            map_out = detection.detection_map(detect_res, label, 21)
517
            self.assertIsNotNone(map_out)
518
            self.assertEqual(map_out.shape, (1,))
519
        print(str(program))
520 521


522 523 524 525
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
526 527
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
528 529
            anchor_shape = [50, 4]

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32'
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1, 10],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            outs = layers.rpn_target_assign(
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
                anchor_box=anchor_box,
                anchor_var=anchor_var,
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
                rpn_batch_size_per_im=256,
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
                rpn_positive_overlap=0.7,
                rpn_negative_overlap=0.3,
                use_random=False,
            )
586 587 588 589 590
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
591

592 593 594 595
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
596
            self.assertIsNotNone(bbox_inside_weight)
597 598 599
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
600
            print(str(program))
601 602


603
class TestGenerateProposals(LayerTest):
604
    def test_generate_proposals(self):
605 606 607
        scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
        bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
        im_info_np = np.array([[8, 8, 0.5], [6, 6, 0.5]]).astype('float32')
608 609 610
        anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4), [4, 4, 3, 4]).astype(
            'float32'
        )
611 612 613
        variances_np = np.ones((4, 4, 3, 4)).astype('float32')

        with self.static_graph():
614 615 616 617 618 619
            scores = fluid.data(
                name='scores', shape=[2, 3, 4, 4], dtype='float32'
            )
            bbox_deltas = fluid.data(
                name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32'
            )
620
            im_info = fluid.data(name='im_info', shape=[2, 3], dtype='float32')
621 622 623 624 625 626
            anchors = fluid.data(
                name='anchors', shape=[4, 4, 3, 4], dtype='float32'
            )
            variances = fluid.data(
                name='var', shape=[4, 4, 3, 4], dtype='float32'
            )
627 628 629 630 631 632 633 634
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores,
                bbox_deltas,
                im_info,
                anchors,
                variances,
                pre_nms_top_n=10,
                post_nms_top_n=5,
635 636 637 638 639 640 641
                return_rois_num=True,
            )
            (
                rois_stat,
                roi_probs_stat,
                rois_num_stat,
            ) = self.get_static_graph_result(
642 643 644 645 646
                feed={
                    'scores': scores_np,
                    'bbox_deltas': bbox_deltas_np,
                    'im_info': im_info_np,
                    'anchors': anchors_np,
647
                    'var': variances_np,
648 649
                },
                fetch_list=[rois, roi_probs, rois_num],
650 651
                with_lod=False,
            )
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

        with self.dynamic_graph():
            scores_dy = base.to_variable(scores_np)
            bbox_deltas_dy = base.to_variable(bbox_deltas_np)
            im_info_dy = base.to_variable(im_info_np)
            anchors_dy = base.to_variable(anchors_np)
            variances_dy = base.to_variable(variances_np)
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores_dy,
                bbox_deltas_dy,
                im_info_dy,
                anchors_dy,
                variances_dy,
                pre_nms_top_n=10,
                post_nms_top_n=5,
667 668
                return_rois_num=True,
            )
669 670 671 672
            rois_dy = rois.numpy()
            roi_probs_dy = roi_probs.numpy()
            rois_num_dy = rois_num.numpy()

673 674 675
        np.testing.assert_array_equal(np.array(rois_stat), rois_dy)
        np.testing.assert_array_equal(np.array(roi_probs_stat), roi_probs_dy)
        np.testing.assert_array_equal(np.array(rois_num_stat), rois_num_dy)
676 677


D
dengkaipeng 已提交
678 679 680 681 682
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
683 684 685
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
686 687 688 689 690 691 692 693 694 695 696 697
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label,
                [10, 13, 30, 13],
                [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
            )
D
dengkaipeng 已提交
698 699 700

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
701 702 703 704
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
705
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
706 707 708
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32
            )
D
dengkaipeng 已提交
709 710 711
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

712 713 714 715 716 717 718
    def test_yolov3_loss_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
719 720 721 722 723 724 725 726 727 728 729 730 731
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label,
                [10, 13, 30, 13],
                [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
                scale_x_y=1.2,
            )
732 733 734 735 736 737 738 739

            self.assertIsNotNone(loss)

    def test_yolo_box_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
740 741 742
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=1.2
            )
743 744 745
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
746

J
jerrywgz 已提交
747 748 749 750
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
751 752 753
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1
            )
J
jerrywgz 已提交
754 755 756 757
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
758

J
jerrywgz 已提交
759 760 761 762
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
763 764 765
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32'
            )
J
jerrywgz 已提交
766
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
767
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
768 769
            self.assertIsNotNone(output)

770 771 772
    def test_multiclass_nms_error(self):
        program = Program()
        with program_guard(program):
773 774 775 776 777 778 779 780 781
            bboxes1 = fluid.data(
                name='bboxes1', shape=[10, 10, 4], dtype='int32'
            )
            scores1 = fluid.data(
                name='scores1', shape=[10, 10], dtype='float32'
            )
            bboxes2 = fluid.data(
                name='bboxes2', shape=[10, 10, 4], dtype='float32'
            )
782
            scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes1,
                scores=scores1,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200,
            )
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes2,
                scores=scores2,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200,
            )
801

J
jerrywgz 已提交
802

803 804 805 806
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
807 808 809
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32'
            )
810
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
811 812 813 814 815 816
            output = fluid.contrib.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7
            )
            output2, index = fluid.contrib.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True
            )
817 818 819 820 821
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


822
class TestCollectFpnPropsals(LayerTest):
823
    def test_collect_fpn_proposals(self):
824 825 826 827 828 829 830 831 832 833 834 835
        multi_bboxes_np = []
        multi_scores_np = []
        rois_num_per_level_np = []
        for i in range(4):
            bboxes_np = np.random.rand(5, 4).astype('float32')
            scores_np = np.random.rand(5, 1).astype('float32')
            rois_num = np.array([2, 3]).astype('int32')
            multi_bboxes_np.append(bboxes_np)
            multi_scores_np.append(scores_np)
            rois_num_per_level_np.append(rois_num)

        with self.static_graph():
836 837
            multi_bboxes = []
            multi_scores = []
838
            rois_num_per_level = []
839
            for i in range(4):
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
                bboxes = fluid.data(
                    name='rois' + str(i),
                    shape=[5, 4],
                    dtype='float32',
                    lod_level=1,
                )
                scores = fluid.data(
                    name='scores' + str(i),
                    shape=[5, 1],
                    dtype='float32',
                    lod_level=1,
                )
                rois_num = fluid.data(
                    name='rois_num' + str(i), shape=[None], dtype='int32'
                )
855

856 857
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
858 859 860 861 862 863 864 865
                rois_num_per_level.append(rois_num)

            fpn_rois, rois_num = layers.collect_fpn_proposals(
                multi_bboxes,
                multi_scores,
                2,
                5,
                10,
866 867
                rois_num_per_level=rois_num_per_level,
            )
868 869 870 871 872 873
            feed = {}
            for i in range(4):
                feed['rois' + str(i)] = multi_bboxes_np[i]
                feed['scores' + str(i)] = multi_scores_np[i]
                feed['rois_num' + str(i)] = rois_num_per_level_np[i]
            fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
874 875
                feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True
            )
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
            fpn_rois_stat = np.array(fpn_rois_stat)
            rois_num_stat = np.array(rois_num_stat)

        with self.dynamic_graph():
            multi_bboxes_dy = []
            multi_scores_dy = []
            rois_num_per_level_dy = []
            for i in range(4):
                bboxes_dy = base.to_variable(multi_bboxes_np[i])
                scores_dy = base.to_variable(multi_scores_np[i])
                rois_num_dy = base.to_variable(rois_num_per_level_np[i])
                multi_bboxes_dy.append(bboxes_dy)
                multi_scores_dy.append(scores_dy)
                rois_num_per_level_dy.append(rois_num_dy)
            fpn_rois_dy, rois_num_dy = fluid.layers.collect_fpn_proposals(
                multi_bboxes_dy,
                multi_scores_dy,
                2,
                5,
                10,
896 897
                rois_num_per_level=rois_num_per_level_dy,
            )
898 899 900
            fpn_rois_dy = fpn_rois_dy.numpy()
            rois_num_dy = rois_num_dy.numpy()

901 902
        np.testing.assert_array_equal(fpn_rois_stat, fpn_rois_dy)
        np.testing.assert_array_equal(rois_num_stat, rois_num_dy)
903

904 905 906 907 908
    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
909 910 911 912 913 914 915 916 917 918 919 920
                bboxes = fluid.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1,
                )
                scores = fluid.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1,
                )
921 922 923 924 925 926
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        program = Program()
        with program_guard(program):
927 928 929 930 931 932
            bbox1 = fluid.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1
            )
            score1 = fluid.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1
            )
933
            bbox2, score2 = generate_input('int32', 'float32', '2')
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000,
            )
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000,
            )
952

953

954
class TestDistributeFpnProposals(LayerTest):
955
    def test_distribute_fpn_proposals(self):
956 957 958 959 960
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = fluid.data(name='rois', shape=[10, 4], dtype='float32')
            rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
961 962 963 964 965
            (
                multi_rois,
                restore_ind,
                rois_num_per_level,
            ) = layers.distribute_fpn_proposals(
966 967 968 969 970
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
971 972
                rois_num=rois_num,
            )
973
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
974 975 976 977 978
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True,
            )
979 980 981 982 983 984 985 986 987
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
988 989 990 991 992
            (
                multi_rois_dy,
                restore_ind_dy,
                rois_num_per_level_dy,
            ) = layers.distribute_fpn_proposals(
993
                fpn_rois=rois_dy,
994 995 996
                min_level=2,
                max_level=5,
                refer_level=4,
997
                refer_scale=224,
998 999
                rois_num=rois_num_dy,
            )
H
hong 已提交
1000
            print(type(multi_rois_dy))
1001 1002 1003 1004 1005 1006 1007 1008
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
1009
            np.testing.assert_array_equal(res_stat, res_dy)
1010

1011 1012 1013
    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            fpn_rois = fluid.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1
            )
            self.assertRaises(
                TypeError,
                layers.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
            )
1026 1027 1028 1029 1030 1031 1032 1033


class TestBoxDecoderAndAssign(unittest.TestCase):
    def test_box_decoder_and_assign(self):
        program = Program()
        with program_guard(program):
            pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            loc = fluid.data(
                name='target_box', shape=[None, 4 * 81], dtype='float32'
            )
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32'
            )
            (
                decoded_box,
                output_assign_box,
            ) = fluid.layers.box_decoder_and_assign(pb, pbv, loc, scores, 4.135)
1044 1045 1046 1047 1048
            self.assertIsNotNone(decoded_box)
            self.assertIsNotNone(output_assign_box)

    def test_box_decoder_and_assign_error(self):
        def generate_input(pb_type, pbv_type, loc_type, score_type, name):
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
            pb = fluid.data(
                name='prior_box' + name, shape=[None, 4], dtype=pb_type
            )
            pbv = fluid.data(
                name='prior_box_var' + name, shape=[4], dtype=pbv_type
            )
            loc = fluid.data(
                name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type
            )
            scores = fluid.data(
                name='scores' + name, shape=[None, 81], dtype=score_type
            )
1061 1062 1063 1064
            return pb, pbv, loc, scores

        program = Program()
        with program_guard(program):
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            pb1, pbv1, loc1, scores1 = generate_input(
                'int32', 'float32', 'float32', 'float32', '1'
            )
            pb2, pbv2, loc2, scores2 = generate_input(
                'float32', 'float32', 'int32', 'float32', '2'
            )
            pb3, pbv3, loc3, scores3 = generate_input(
                'float32', 'float32', 'float32', 'int32', '3'
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb1,
                prior_box_var=pbv1,
                target_box=loc1,
                box_score=scores1,
                box_clip=4.0,
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb2,
                prior_box_var=pbv2,
                target_box=loc2,
                box_score=scores2,
                box_clip=4.0,
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb3,
                prior_box_var=pbv3,
                target_box=loc3,
                box_score=scores3,
                box_clip=4.0,
            )
1101

1102

1103
if __name__ == '__main__':
H
hong 已提交
1104
    paddle.enable_static()
1105
    unittest.main()