ngraph_engine.cc 21.8 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
44
    sp.emplace_back(k);
B
baojun 已提交
45 46 47 48
  }
  return sp;
}

49 50 51 52 53 54 55 56 57
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
58 59 60 61 62 63
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
64
        {framework::proto::VarType::UINT8, ngraph::element::u8},
65 66 67 68 69 70 71 72
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
73
        {ngraph::element::u8, framework::proto::VarType::UINT8},
74 75 76 77 78 79
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};
std::vector<std::string> NgraphEngine::fetch_vars = {};
framework::Variable* NgraphEngine::pre_var_ptr = nullptr;
const framework::BlockDesc* NgraphEngine::p_bdesc = nullptr;
80
bool NgraphEngine::is_training = false;
81 82 83 84 85

std::unordered_map<std::string, EngineCache> NgraphEngine::engine_cache = {};
std::unordered_map<std::string,
                   std::vector<std::shared_ptr<ngraph::runtime::Tensor>>>
    NgraphEngine::t_in_cache_ = {};
B
baojun 已提交
86 87 88 89 90

std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
    ngraph::runtime::Backend::create("CPU");

static std::vector<std::vector<int>> NgraphOpIntervals(
91 92 93
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
  NgraphEngine::fetch_vars.clear();
B
baojun 已提交
94
  std::vector<std::vector<int>> intervals;
95 96

  int size = ops->size();
B
baojun 已提交
97
  int left = 0;
B
baojun 已提交
98
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
99
         ops->at(left)->Type() != "read" &&
B
baojun 已提交
100
         ops->at(left)->Type() != framework::kFetchOpType) {
B
baojun 已提交
101 102
    ++left;
  }
103

104 105
  while (left < size && (ops->at(left)->Type() == framework::kFeedOpType ||
                         ops->at(left)->Type() == "read")) {
106 107 108 109 110
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
111 112 113 114
    ++left;
  }

  int right = left;
115
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
116 117 118
    ++right;
  }

119 120 121 122 123 124 125 126 127 128
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    for (auto& var_name_item : ops->at(index)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::fetch_vars.emplace_back(var_name);
      }
    }
    ++index;
  }

B
baojun 已提交
129 130 131 132
  if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
    left = 0;
  }

B
baojun 已提交
133 134 135
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
136
    auto op_type = ops->at(pivot)->Type();
137
    if (NgraphBridge::isRegister(op_type)) {
B
baojun 已提交
138 139 140 141
      ++pivot;
    } else {
      int start = pivot, end = start;
      while (pivot < right &&
142
             (!NgraphBridge::isRegister(ops->at(pivot)->Type()))) {
B
baojun 已提交
143 144 145 146
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
147
      intervals.emplace_back(interval);
B
baojun 已提交
148 149 150 151 152
    }
  }  // end while
  return intervals;
}

153 154 155 156 157 158 159 160 161 162 163 164
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
std::string SerializedBlock(const std::vector<framework::OpDesc*>& op_descs) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto* op_desc : op_descs) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::p_bdesc = &block_desc;
  auto intervals = NgraphOpIntervals(ops);
  std::string engine_key =
      GenerateEngineKey(feed_vars, fetch_vars, ops->size());
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    SubstituteNgraphOp(ops, engine_key, "", *it);
B
baojun 已提交
219 220 221 222 223
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
224
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
225
    : scope_(scope), place_(place) {
226 227 228 229
  std::string serialized_graph = ctx.Attr<std::string>("graph");
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");

B
baojun 已提交
230 231 232 233 234 235
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

236
  GetNgFunction(engine_key, interval);
B
baojun 已提交
237 238
}

239
void NgraphEngine::Prepare(const std::vector<int>& interval) {
B
baojun 已提交
240
  bool has_fetch = false, is_full = false;
241
  for (auto& var : p_bdesc->AllVars()) {
B
baojun 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

268 269 270
  std::vector<paddle::framework::OpDesc*> ops_desc;
  for (auto op_desc : p_bdesc->AllOps()) {
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
271 272 273
    if (op_desc->Type() == framework::kFetchOpType) {
      has_fetch = true;
    }
B
baojun 已提交
274 275
  }

276
  for (auto op_desc : ops_desc) {
B
baojun 已提交
277
    if (op_desc->Type().find("_grad") != std::string::npos) {
278
      is_training = true;
279
      this->is_test_ = false;
B
baojun 已提交
280 281 282 283
      break;
    }
  }

284 285 286
  if (interval[0] > 0 &&
      ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType &&
      interval[1] < static_cast<int>(ops_desc.size()) &&
B
baojun 已提交
287 288
      ops_desc.at(interval[1])->Type() == framework::kFetchOpType) {
    is_full = true;
B
baojun 已提交
289 290
  }

B
baojun 已提交
291
  if (is_full) {
292 293 294 295
    this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN;
  } else {
    this->op_state_ =
        this->is_test_ ? OpState::PARTIAL_TEST : OpState::PARTIAL_TRAIN;
B
baojun 已提交
296 297
  }

298 299 300 301 302 303
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
B
baojun 已提交
304 305
  while (idx < static_cast<int>(ops_desc.size()) &&
         ops_desc.at(idx)->Type() != framework::kFetchOpType) {
306 307
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
308
      for (auto& var_name : var_name_item.second) {
309
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
310 311
      }
    }
312
    ++idx;
B
baojun 已提交
313
  }
314

B
baojun 已提交
315 316 317 318
  if (!has_fetch) {
    op_state_ = OpState::UNKNOWN;
  }

319
  BuildNgIO(ops_desc, interval);
B
baojun 已提交
320 321
}

322 323
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
324 325
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
326 327
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
328 329 330 331 332 333
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
334 335
                var_in_.end() &&
            scope_.FindVar(var_name)) {
B
baojun 已提交
336
          // fill var_in here to keep lhs and rhs order
337
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
353 354
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
355 356 357 358 359
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
360
        switch (this->op_state_) {
B
baojun 已提交
361 362
          case OpState::PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
363 364 365
                find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
366 367 368
            }
            break;
          case OpState::FULL_TEST:
369 370 371
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
372 373 374
            }
            break;
          case OpState::PARTIAL_TRAIN:
375 376
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
377 378
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
379
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
380 381 382
            }
            break;
          case OpState::FULL_TRAIN:
383 384
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
385
                persistables_.find(var_name) != persistables_.end()) {
386
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
387 388 389
            }
            break;
          default:
390
            this->var_out_.emplace_back(var_name);
B
baojun 已提交
391 392 393 394
        }
      }
    }
  }
B
baojun 已提交
395

396 397 398 399 400 401
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
402 403
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }

  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

void NgraphEngine::RunInferShape() {
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
    op->RuntimeInferShape(scope_, place_, ctx);
  }
}

void NgraphEngine::BuildNgFunction(const std::vector<int>& interval) {
  Prepare(interval);
  RunInferShape();
  GetNgInputShape();
B
baojun 已提交
455 456 457 458 459 460
  BuildNgNodes();
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
461
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
462 463 464 465 466 467
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
468
    func_inputs.emplace_back(prm);
B
baojun 已提交
469 470 471 472 473 474
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

475 476 477 478 479 480 481 482 483 484 485 486 487
void NgraphEngine::GetNgFunction(std::string engine_key,
                                 const std::vector<int>& interval) {
  bool use_cache = true;
  if (use_cache) {
    this->func_cache_key_ = "";
    for (int i = 0; i < std::min(static_cast<int>(feed_vars.size()), 10); ++i) {
      auto* var = scope_.FindVar(feed_vars[i]);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto dims = tensor_pd->dims();
        for (int j = 0; j < dims.size(); ++j) {
          func_cache_key_ += std::to_string(dims[j]);
        }
B
baojun 已提交
488 489
      }
    }
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    func_cache_key_ += std::to_string(interval[0]) + "_" +
                       std::to_string(interval[1]) + engine_key;
    func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

    if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
      if (engine_cache[func_cache_key_].persistables.size() == 0) {
        engine_cache.clear();
        t_in_cache_.clear();
      } else {
        auto var_name = engine_cache[func_cache_key_].persistables.begin();
        framework::Variable* var = scope_.FindVar(*var_name);
        if (var != pre_var_ptr) {
          engine_cache.clear();
          t_in_cache_.clear();
        }
        pre_var_ptr = var;
      }
    }

    if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
      BuildNgFunction(interval);
      engine_cache[func_cache_key_].ngraph_function = this->ngraph_function_;
      engine_cache[func_cache_key_].persistables = this->persistables_;
      engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
      engine_cache[func_cache_key_].var_in = this->var_in_;
      engine_cache[func_cache_key_].var_out = this->var_out_;
      engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
517 518
    }
  } else {
519
    BuildNgFunction(interval);
B
baojun 已提交
520 521 522 523 524
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
  std::shared_ptr<ngraph::Function> ng_func;
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;
  bool is_test;

  bool use_cache = true;
  if (use_cache) {
    PADDLE_ENFORCE(engine_cache.find(func_cache_key_) != engine_cache.end(),
                   "Cannot find cached data to run ngraph function");
    ng_func = engine_cache[func_cache_key_].ngraph_function;
    p_persistables = &(engine_cache[func_cache_key_].persistables);
    p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
    p_var_in = &(engine_cache[func_cache_key_].var_in);
    p_var_out = &(engine_cache[func_cache_key_].var_out);
    is_test = engine_cache[func_cache_key_].is_test;
  } else {
    ng_func = ngraph_function_;
    p_persistables = &this->persistables_;
    p_var_in_updates = &this->var_in_updates_;
    p_var_in = &this->var_in_;
    p_var_out = &this->var_out_;
    is_test = this->is_test_;
  }
B
baojun 已提交
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

  auto m_parameters = ng_func->get_parameters();
  auto m_results = ng_func->get_results();
  if (is_test && use_cache &&
      t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
        (*p_t_in)[index] = ti;
B
baojun 已提交
571
      } else {
572
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
573
      }
574 575 576 577
    }
  } else {
    if (is_test && use_cache) {
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
578
    } else {
579
      p_t_in = &t_in;
B
baojun 已提交
580
    }
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                       "Ensure ngraph tensor layout align with paddle tensor");
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
599
      if (!is_training && is_test && is_persistable) {
600 601 602
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
603 604 605
    }
  }

606 607 608
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
609 610
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
611 612
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
613
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
614 615 616 617 618
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
          backend_->create_tensor(ng_type, sp, pd_arr);
      t_out.emplace_back(to);
B
baojun 已提交
619 620 621 622 623
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

624 625
  auto handle = backend_->compile(ng_func);
  handle->call_with_validate(t_out, *p_t_in);
B
baojun 已提交
626 627 628
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle