ngraph_engine.cc 21.2 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
44
    sp.emplace_back(k);
B
baojun 已提交
45 46 47 48
  }
  return sp;
}

49 50 51 52 53 54 55 56 57
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
58 59 60 61 62 63
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};
std::vector<std::string> NgraphEngine::fetch_vars = {};
framework::Variable* NgraphEngine::pre_var_ptr = nullptr;
const framework::BlockDesc* NgraphEngine::p_bdesc = nullptr;

std::unordered_map<std::string, EngineCache> NgraphEngine::engine_cache = {};
std::unordered_map<std::string,
                   std::vector<std::shared_ptr<ngraph::runtime::Tensor>>>
    NgraphEngine::t_in_cache_ = {};
B
baojun 已提交
83 84 85 86 87

std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
    ngraph::runtime::Backend::create("CPU");

static std::vector<std::vector<int>> NgraphOpIntervals(
88 89 90
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
  NgraphEngine::fetch_vars.clear();
B
baojun 已提交
91
  std::vector<std::vector<int>> intervals;
92 93

  int size = ops->size();
B
baojun 已提交
94
  int left = 0;
95
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType) {
B
baojun 已提交
96 97 98 99 100
    ++left;
  }
  if (left == size) {
    return intervals;
  }
101 102 103 104 105 106 107

  while (left < size && ops->at(left)->Type() == framework::kFeedOpType) {
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
108 109 110 111
    ++left;
  }

  int right = left;
112
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
113 114 115 116 117 118 119
    ++right;
  }
  if (right == size) {
    return intervals;
  }
  if (left >= right) return intervals;

120 121 122 123 124 125 126 127 128 129
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    for (auto& var_name_item : ops->at(index)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::fetch_vars.emplace_back(var_name);
      }
    }
    ++index;
  }

B
baojun 已提交
130 131 132
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
133
    auto op_type = ops->at(pivot)->Type();
134
    if (NgraphBridge::isRegister(op_type)) {
B
baojun 已提交
135 136 137 138
      ++pivot;
    } else {
      int start = pivot, end = start;
      while (pivot < right &&
139
             (!NgraphBridge::isRegister(ops->at(pivot)->Type()))) {
B
baojun 已提交
140 141 142 143
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
144
      intervals.emplace_back(interval);
B
baojun 已提交
145 146 147 148 149
    }
  }  // end while
  return intervals;
}

150 151 152 153 154 155 156 157 158 159 160 161
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
162 163
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
std::string SerializedBlock(const std::vector<framework::OpDesc*>& op_descs) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto* op_desc : op_descs) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::p_bdesc = &block_desc;
  auto intervals = NgraphOpIntervals(ops);
  std::string engine_key =
      GenerateEngineKey(feed_vars, fetch_vars, ops->size());
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    SubstituteNgraphOp(ops, engine_key, "", *it);
B
baojun 已提交
216 217 218 219 220
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
221
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
222
    : scope_(scope), place_(place) {
223 224 225 226
  std::string serialized_graph = ctx.Attr<std::string>("graph");
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");

B
baojun 已提交
227 228 229 230 231 232
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

233
  GetNgFunction(engine_key, interval);
B
baojun 已提交
234 235
}

236 237
void NgraphEngine::Prepare(const std::vector<int>& interval) {
  for (auto& var : p_bdesc->AllVars()) {
B
baojun 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

264 265 266
  std::vector<paddle::framework::OpDesc*> ops_desc;
  for (auto op_desc : p_bdesc->AllOps()) {
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
267 268
  }

269
  for (auto op_desc : ops_desc) {
B
baojun 已提交
270
    if (op_desc->Type().find("_grad") != std::string::npos) {
271
      this->is_test_ = false;
B
baojun 已提交
272 273 274 275
      break;
    }
  }

276 277 278 279 280
  if (interval[0] > 0 &&
      ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType &&
      interval[1] < static_cast<int>(ops_desc.size()) &&
      ops_desc.at(interval.at(1))->Type() == framework::kFetchOpType) {
    this->op_state_ = OpState::FULL;
B
baojun 已提交
281 282
  }

283 284 285 286 287
  if (this->op_state_ == OpState::FULL) {
    this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN;
  } else {
    this->op_state_ =
        this->is_test_ ? OpState::PARTIAL_TEST : OpState::PARTIAL_TRAIN;
B
baojun 已提交
288 289
  }

290 291 292 293 294 295 296 297 298
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
  while (ops_desc.at(idx)->Type() != framework::kFetchOpType) {
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
299
      for (auto& var_name : var_name_item.second) {
300
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
301 302
      }
    }
303
    ++idx;
B
baojun 已提交
304
  }
305 306

  BuildNgIO(ops_desc, interval);
B
baojun 已提交
307 308
}

309 310
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
311 312
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
313 314
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
315 316 317 318 319 320 321 322
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
                var_in_.end()) {
          // fill var_in here to keep lhs and rhs order
323
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
339 340
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
341 342 343 344 345
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
346
        switch (this->op_state_) {
B
baojun 已提交
347 348
          case OpState::PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
349 350 351
                find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
352 353 354
            }
            break;
          case OpState::FULL_TEST:
355 356 357
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
358 359 360
            }
            break;
          case OpState::PARTIAL_TRAIN:
361 362
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
363 364
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
365
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
366 367 368
            }
            break;
          case OpState::FULL_TRAIN:
369 370
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
371
                persistables_.find(var_name) != persistables_.end()) {
372
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
373 374 375
            }
            break;
          default:
376
            this->var_out_.emplace_back(var_name);
B
baojun 已提交
377 378 379 380
        }
      }
    }
  }
381 382 383 384 385 386
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }

  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

void NgraphEngine::RunInferShape() {
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
    op->RuntimeInferShape(scope_, place_, ctx);
  }
}

void NgraphEngine::BuildNgFunction(const std::vector<int>& interval) {
  Prepare(interval);
  RunInferShape();
  GetNgInputShape();
B
baojun 已提交
440 441 442 443 444 445
  BuildNgNodes();
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
446
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
447 448 449 450 451 452
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
453
    func_inputs.emplace_back(prm);
B
baojun 已提交
454 455 456 457 458 459
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

460 461 462 463 464 465 466 467 468 469 470 471 472
void NgraphEngine::GetNgFunction(std::string engine_key,
                                 const std::vector<int>& interval) {
  bool use_cache = true;
  if (use_cache) {
    this->func_cache_key_ = "";
    for (int i = 0; i < std::min(static_cast<int>(feed_vars.size()), 10); ++i) {
      auto* var = scope_.FindVar(feed_vars[i]);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto dims = tensor_pd->dims();
        for (int j = 0; j < dims.size(); ++j) {
          func_cache_key_ += std::to_string(dims[j]);
        }
B
baojun 已提交
473 474
      }
    }
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    func_cache_key_ += std::to_string(interval[0]) + "_" +
                       std::to_string(interval[1]) + engine_key;
    func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

    if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
      if (engine_cache[func_cache_key_].persistables.size() == 0) {
        engine_cache.clear();
        t_in_cache_.clear();
      } else {
        auto var_name = engine_cache[func_cache_key_].persistables.begin();
        framework::Variable* var = scope_.FindVar(*var_name);
        if (var != pre_var_ptr) {
          engine_cache.clear();
          t_in_cache_.clear();
        }
        pre_var_ptr = var;
      }
    }

    if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
      BuildNgFunction(interval);
      engine_cache[func_cache_key_].ngraph_function = this->ngraph_function_;
      engine_cache[func_cache_key_].persistables = this->persistables_;
      engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
      engine_cache[func_cache_key_].var_in = this->var_in_;
      engine_cache[func_cache_key_].var_out = this->var_out_;
      engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
502 503
    }
  } else {
504
    BuildNgFunction(interval);
B
baojun 已提交
505 506 507 508 509
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  std::shared_ptr<ngraph::Function> ng_func;
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;
  bool is_test;

  bool use_cache = true;
  if (use_cache) {
    PADDLE_ENFORCE(engine_cache.find(func_cache_key_) != engine_cache.end(),
                   "Cannot find cached data to run ngraph function");
    ng_func = engine_cache[func_cache_key_].ngraph_function;
    p_persistables = &(engine_cache[func_cache_key_].persistables);
    p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
    p_var_in = &(engine_cache[func_cache_key_].var_in);
    p_var_out = &(engine_cache[func_cache_key_].var_out);
    is_test = engine_cache[func_cache_key_].is_test;
  } else {
    ng_func = ngraph_function_;
    p_persistables = &this->persistables_;
    p_var_in_updates = &this->var_in_updates_;
    p_var_in = &this->var_in_;
    p_var_out = &this->var_out_;
    is_test = this->is_test_;
  }
B
baojun 已提交
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

  auto m_parameters = ng_func->get_parameters();
  auto m_results = ng_func->get_results();
  if (is_test && use_cache &&
      t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
        (*p_t_in)[index] = ti;
B
baojun 已提交
556
      } else {
557
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
558
      }
559 560 561 562
    }
  } else {
    if (is_test && use_cache) {
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
563
    } else {
564
      p_t_in = &t_in;
B
baojun 已提交
565
    }
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                       "Ensure ngraph tensor layout align with paddle tensor");
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
      if (is_test && is_persistable) {
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
588 589 590
    }
  }

591 592 593
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
594 595
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
596 597
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
598
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
599 600 601 602 603
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
          backend_->create_tensor(ng_type, sp, pd_arr);
      t_out.emplace_back(to);
B
baojun 已提交
604 605 606 607 608
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

609 610
  auto handle = backend_->compile(ng_func);
  handle->call_with_validate(t_out, *p_t_in);
B
baojun 已提交
611 612 613
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle