ngraph_engine.cc 21.6 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
44
    sp.emplace_back(k);
B
baojun 已提交
45 46 47 48
  }
  return sp;
}

49 50 51 52 53 54 55 56 57
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
58 59 60 61 62 63
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
64 65 66 67 68 69 70 71 72 73 74 75 76 77
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};
std::vector<std::string> NgraphEngine::fetch_vars = {};
framework::Variable* NgraphEngine::pre_var_ptr = nullptr;
const framework::BlockDesc* NgraphEngine::p_bdesc = nullptr;
78
bool NgraphEngine::is_training = false;
79 80 81 82 83

std::unordered_map<std::string, EngineCache> NgraphEngine::engine_cache = {};
std::unordered_map<std::string,
                   std::vector<std::shared_ptr<ngraph::runtime::Tensor>>>
    NgraphEngine::t_in_cache_ = {};
B
baojun 已提交
84 85 86 87 88

std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
    ngraph::runtime::Backend::create("CPU");

static std::vector<std::vector<int>> NgraphOpIntervals(
89 90 91
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
  NgraphEngine::fetch_vars.clear();
B
baojun 已提交
92
  std::vector<std::vector<int>> intervals;
93 94

  int size = ops->size();
B
baojun 已提交
95
  int left = 0;
B
baojun 已提交
96
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
97
         ops->at(left)->Type() != "read" &&
B
baojun 已提交
98
         ops->at(left)->Type() != framework::kFetchOpType) {
B
baojun 已提交
99 100
    ++left;
  }
101

102 103
  while (left < size && (ops->at(left)->Type() == framework::kFeedOpType ||
                         ops->at(left)->Type() == "read")) {
104 105 106 107 108
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
109 110 111 112
    ++left;
  }

  int right = left;
113
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
114 115 116
    ++right;
  }

117 118 119 120 121 122 123 124 125 126
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    for (auto& var_name_item : ops->at(index)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::fetch_vars.emplace_back(var_name);
      }
    }
    ++index;
  }

B
baojun 已提交
127 128 129 130
  if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
    left = 0;
  }

B
baojun 已提交
131 132 133
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
134
    auto op_type = ops->at(pivot)->Type();
135
    if (NgraphBridge::isRegister(op_type)) {
B
baojun 已提交
136 137 138 139
      ++pivot;
    } else {
      int start = pivot, end = start;
      while (pivot < right &&
140
             (!NgraphBridge::isRegister(ops->at(pivot)->Type()))) {
B
baojun 已提交
141 142 143 144
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
145
      intervals.emplace_back(interval);
B
baojun 已提交
146 147 148 149 150
    }
  }  // end while
  return intervals;
}

151 152 153 154 155 156 157 158 159 160 161 162
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
std::string SerializedBlock(const std::vector<framework::OpDesc*>& op_descs) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto* op_desc : op_descs) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::p_bdesc = &block_desc;
  auto intervals = NgraphOpIntervals(ops);
  std::string engine_key =
      GenerateEngineKey(feed_vars, fetch_vars, ops->size());
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    SubstituteNgraphOp(ops, engine_key, "", *it);
B
baojun 已提交
217 218 219 220 221
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
222
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
223
    : scope_(scope), place_(place) {
224 225 226 227
  std::string serialized_graph = ctx.Attr<std::string>("graph");
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");

B
baojun 已提交
228 229 230 231 232 233
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

234
  GetNgFunction(engine_key, interval);
B
baojun 已提交
235 236
}

237
void NgraphEngine::Prepare(const std::vector<int>& interval) {
B
baojun 已提交
238
  bool has_fetch = false, is_full = false;
239
  for (auto& var : p_bdesc->AllVars()) {
B
baojun 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

266 267 268
  std::vector<paddle::framework::OpDesc*> ops_desc;
  for (auto op_desc : p_bdesc->AllOps()) {
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
269 270 271
    if (op_desc->Type() == framework::kFetchOpType) {
      has_fetch = true;
    }
B
baojun 已提交
272 273
  }

274
  for (auto op_desc : ops_desc) {
B
baojun 已提交
275
    if (op_desc->Type().find("_grad") != std::string::npos) {
276
      is_training = true;
277
      this->is_test_ = false;
B
baojun 已提交
278 279 280 281
      break;
    }
  }

282 283 284
  if (interval[0] > 0 &&
      ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType &&
      interval[1] < static_cast<int>(ops_desc.size()) &&
B
baojun 已提交
285 286
      ops_desc.at(interval[1])->Type() == framework::kFetchOpType) {
    is_full = true;
B
baojun 已提交
287 288
  }

B
baojun 已提交
289
  if (is_full) {
290 291 292 293
    this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN;
  } else {
    this->op_state_ =
        this->is_test_ ? OpState::PARTIAL_TEST : OpState::PARTIAL_TRAIN;
B
baojun 已提交
294 295
  }

296 297 298 299 300 301
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
B
baojun 已提交
302 303
  while (idx < static_cast<int>(ops_desc.size()) &&
         ops_desc.at(idx)->Type() != framework::kFetchOpType) {
304 305
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
306
      for (auto& var_name : var_name_item.second) {
307
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
308 309
      }
    }
310
    ++idx;
B
baojun 已提交
311
  }
312

B
baojun 已提交
313 314 315 316
  if (!has_fetch) {
    op_state_ = OpState::UNKNOWN;
  }

317
  BuildNgIO(ops_desc, interval);
B
baojun 已提交
318 319
}

320 321
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
322 323
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
324 325
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
326 327 328 329 330 331
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
332 333
                var_in_.end() &&
            scope_.FindVar(var_name)) {
B
baojun 已提交
334
          // fill var_in here to keep lhs and rhs order
335
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
351 352
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
353 354 355 356 357
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
358
        switch (this->op_state_) {
B
baojun 已提交
359 360
          case OpState::PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
361 362 363
                find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
364 365 366
            }
            break;
          case OpState::FULL_TEST:
367 368 369
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
370 371 372
            }
            break;
          case OpState::PARTIAL_TRAIN:
373 374
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
375 376
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
377
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
378 379 380
            }
            break;
          case OpState::FULL_TRAIN:
381 382
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
383
                persistables_.find(var_name) != persistables_.end()) {
384
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
385 386 387
            }
            break;
          default:
388
            this->var_out_.emplace_back(var_name);
B
baojun 已提交
389 390 391 392
        }
      }
    }
  }
B
baojun 已提交
393

394 395 396 397 398 399
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
400 401
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }

  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

void NgraphEngine::RunInferShape() {
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
    op->RuntimeInferShape(scope_, place_, ctx);
  }
}

void NgraphEngine::BuildNgFunction(const std::vector<int>& interval) {
  Prepare(interval);
  RunInferShape();
  GetNgInputShape();
B
baojun 已提交
453 454 455 456 457 458
  BuildNgNodes();
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
459
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
460 461 462 463 464 465
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
466
    func_inputs.emplace_back(prm);
B
baojun 已提交
467 468 469 470 471 472
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

473 474 475 476 477 478 479 480 481 482 483 484 485
void NgraphEngine::GetNgFunction(std::string engine_key,
                                 const std::vector<int>& interval) {
  bool use_cache = true;
  if (use_cache) {
    this->func_cache_key_ = "";
    for (int i = 0; i < std::min(static_cast<int>(feed_vars.size()), 10); ++i) {
      auto* var = scope_.FindVar(feed_vars[i]);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto dims = tensor_pd->dims();
        for (int j = 0; j < dims.size(); ++j) {
          func_cache_key_ += std::to_string(dims[j]);
        }
B
baojun 已提交
486 487
      }
    }
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    func_cache_key_ += std::to_string(interval[0]) + "_" +
                       std::to_string(interval[1]) + engine_key;
    func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

    if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
      if (engine_cache[func_cache_key_].persistables.size() == 0) {
        engine_cache.clear();
        t_in_cache_.clear();
      } else {
        auto var_name = engine_cache[func_cache_key_].persistables.begin();
        framework::Variable* var = scope_.FindVar(*var_name);
        if (var != pre_var_ptr) {
          engine_cache.clear();
          t_in_cache_.clear();
        }
        pre_var_ptr = var;
      }
    }

    if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
      BuildNgFunction(interval);
      engine_cache[func_cache_key_].ngraph_function = this->ngraph_function_;
      engine_cache[func_cache_key_].persistables = this->persistables_;
      engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
      engine_cache[func_cache_key_].var_in = this->var_in_;
      engine_cache[func_cache_key_].var_out = this->var_out_;
      engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
515 516
    }
  } else {
517
    BuildNgFunction(interval);
B
baojun 已提交
518 519 520 521 522
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
  std::shared_ptr<ngraph::Function> ng_func;
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;
  bool is_test;

  bool use_cache = true;
  if (use_cache) {
    PADDLE_ENFORCE(engine_cache.find(func_cache_key_) != engine_cache.end(),
                   "Cannot find cached data to run ngraph function");
    ng_func = engine_cache[func_cache_key_].ngraph_function;
    p_persistables = &(engine_cache[func_cache_key_].persistables);
    p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
    p_var_in = &(engine_cache[func_cache_key_].var_in);
    p_var_out = &(engine_cache[func_cache_key_].var_out);
    is_test = engine_cache[func_cache_key_].is_test;
  } else {
    ng_func = ngraph_function_;
    p_persistables = &this->persistables_;
    p_var_in_updates = &this->var_in_updates_;
    p_var_in = &this->var_in_;
    p_var_out = &this->var_out_;
    is_test = this->is_test_;
  }
B
baojun 已提交
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

  auto m_parameters = ng_func->get_parameters();
  auto m_results = ng_func->get_results();
  if (is_test && use_cache &&
      t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
        (*p_t_in)[index] = ti;
B
baojun 已提交
569
      } else {
570
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
571
      }
572 573 574 575
    }
  } else {
    if (is_test && use_cache) {
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
576
    } else {
577
      p_t_in = &t_in;
B
baojun 已提交
578
    }
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                       "Ensure ngraph tensor layout align with paddle tensor");
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
597
      if (!is_training && is_test && is_persistable) {
598 599 600
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
601 602 603
    }
  }

604 605 606
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
607 608
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
609 610
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
611
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
612 613 614 615 616
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
          backend_->create_tensor(ng_type, sp, pd_arr);
      t_out.emplace_back(to);
B
baojun 已提交
617 618 619 620 621
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

622 623
  auto handle = backend_->compile(ng_func);
  handle->call_with_validate(t_out, *p_t_in);
B
baojun 已提交
624 625 626
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle