test_expand_v2_op.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20
from eager_op_test import OpTest
21 22

import paddle
23
import paddle.fluid as fluid
24
from paddle.fluid import Program, core, program_guard
25 26 27 28 29 30


# Situation 1: shape is a list(without tensor)
class TestExpandV2OpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
31
        self.prim_op_type = "prim"
32
        self.init_data()
H
hong 已提交
33
        self.python_api = paddle.expand
34 35 36 37
        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'shape': self.shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}
38
        self.enable_cinn = True
39 40 41 42 43 44 45

    def init_data(self):
        self.ori_shape = [100]
        self.shape = [100]
        self.expand_times = [1]

    def test_check_output(self):
46
        self.check_output()
47 48

    def test_check_grad(self):
49
        self.check_grad(['X'], 'Out', check_prim=True)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.shape = [2, 120]
        self.expand_times = [2, 1]


class TestExpandV2OpRank2(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [1, 140]
        self.shape = [12, 140]
        self.expand_times = [12, 1]


class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.shape = (2, 10, 5)
        self.expand_times = (1, 1, 1)


class TestExpandV2OpRank4(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.shape = (-1, -1, -1, -1)
        self.expand_times = (1, 1, 1, 1)


# Situation 2: shape is a list(with tensor)
class TestExpandV2OpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
84
        self.prim_op_type = "prim"
85
        self.python_api = paddle.expand
86 87 88
        self.init_data()
        expand_shapes_tensor = []
        for index, ele in enumerate(self.expand_shape):
89 90 91
            expand_shapes_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'expand_shapes_tensor': expand_shapes_tensor,
        }
        self.attrs = {"shape": self.infer_expand_shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [1]
        self.expand_shape = [100]
        self.infer_expand_shape = [-1]

    def test_check_output(self):
108
        self.check_output()
109 110

    def test_check_grad(self):
111
        self.check_grad(['X'], 'Out')
112 113 114 115 116 117 118 119 120 121 122 123 124 125


class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.expand_shape = [12, 14]
        self.infer_expand_shape = [12, -1]


# Situation 3: shape is a tensor
class TestExpandV2OpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
126
        self.prim_op_type = "prim"
127
        self.python_api = paddle.expand
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'Shape': np.array(self.expand_shape).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [2, 1]
        self.expand_shape = [2, 100]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# Situation 4: input x is Integer
class TestExpandV2OpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
154
        self.prim_op_type = "prim"
155
        self.python_api = paddle.expand
156
        self.inputs = {
157
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
158 159 160 161 162 163 164 165 166
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


167
#  Situation 5: input x is Bool
168 169 170
class TestExpandV2OpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
171
        self.prim_op_type = "prim"
172
        self.python_api = paddle.expand
173 174 175 176 177 178 179 180 181
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


182
#  Situation 6: input x is Integer
183 184 185
class TestExpandV2OpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
186
        self.prim_op_type = "prim"
187
        self.python_api = paddle.expand
188
        self.inputs = {
189
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
190 191 192 193 194 195 196 197 198 199 200 201
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestExpandV2Error(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
202 203 204
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
205 206
            shape = [2, 2]
            self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
G
GGBond8488 已提交
207
            x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8")
208
            self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
G
GGBond8488 已提交
209
            x3 = paddle.static.data(name='x3', shape=[-1, 4], dtype="bool")
L
lilong12 已提交
210
            x3.stop_gradient = False
211 212 213 214 215 216 217
            self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)


# Test python API
class TestExpandV2API(unittest.TestCase):
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
G
GGBond8488 已提交
218
        x = paddle.static.data(name='x', shape=[12, 14], dtype="float32")
219

220
        positive_2 = paddle.tensor.fill_constant([1], "int32", 12)
G
GGBond8488 已提交
221
        expand_shape = paddle.static.data(
222 223 224 225
            name="expand_shape",
            shape=[2],
            dtype="int32",
        )
226 227 228 229 230 231 232 233

        out_1 = paddle.expand(x, shape=[12, 14])
        out_2 = paddle.expand(x, shape=[positive_2, 14])
        out_3 = paddle.expand(x, shape=expand_shape)

        g0 = fluid.backward.calc_gradient(out_2, x)

        exe = fluid.Executor(place=fluid.CPUPlace())
234 235 236 237 238 239 240 241
        res_1, res_2, res_3 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                "expand_shape": np.array([12, 14]).astype("int32"),
            },
            fetch_list=[out_1, out_2, out_3],
        )
242 243 244 245 246
        assert np.array_equal(res_1, np.tile(input, (1, 1)))
        assert np.array_equal(res_2, np.tile(input, (1, 1)))
        assert np.array_equal(res_3, np.tile(input, (1, 1)))


247 248 249 250 251 252
class TestExpandInferShape(unittest.TestCase):
    def test_shape_with_var(self):
        with program_guard(Program(), Program()):
            x = paddle.static.data(shape=[-1, 1, 3], name='x')
            fake_var = paddle.randn([2, 3])
            target_shape = [
253 254 255
                -1,
                paddle.shape(fake_var)[0],
                paddle.shape(fake_var)[1],
256 257 258 259 260
            ]
            out = paddle.expand(x, shape=target_shape)
            self.assertListEqual(list(out.shape), [-1, -1, -1])


261
# Test python Dygraph API
262 263 264 265 266 267 268 269
class TestExpandV2DygraphAPI(unittest.TestCase):
    def test_expand_times_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            paddle.seed(1)
            a = paddle.rand([2, 5])
            expand_1 = paddle.expand(a, shape=[2, 5])
            np_array = np.array([2, 5])
            expand_2 = paddle.expand(a, shape=np_array)
270
            np.testing.assert_array_equal(expand_1.numpy(), expand_2.numpy())
271 272


273 274 275 276 277 278 279 280 281 282
class TestExpandDoubleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
283
        data = paddle.static.data('data', [2, 3], dtype)
284 285 286 287
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

288 289 290 291 292 293
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandTripleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
314
        data = paddle.static.data('data', [2, 3], dtype)
315 316 317 318
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

319 320 321 322 323 324
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
325 326 327 328 329 330 331 332 333 334

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
# Situation 7: comp case, shape is a list(without tensor)
class TestExpandV2CompOpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.prim_op_type = "comp"
        self.init_data()
        self.python_api = paddle.expand
        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'shape': self.shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}
        self.enable_cinn = True

    def init_data(self):
        self.ori_shape = [100]
        self.shape = [100]
        self.expand_times = [1]

    def test_check_output(self):
        self.check_output(check_prim=True)

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', check_prim=True)


class TestExpandV2OpCompRank2_DimExpanding(TestExpandV2CompOpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.shape = [2, 120]
        self.expand_times = [2, 1]


class TestExpandV2CompOpRank2(TestExpandV2CompOpRank1):
    def init_data(self):
        self.ori_shape = [1, 140]
        self.shape = [12, 140]
        self.expand_times = [12, 1]


class TestExpandV2CompOpRank3_Corner(TestExpandV2CompOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.shape = (2, 10, 5)
        self.expand_times = (1, 1, 1)


class TestExpandV2CompOpRank4(TestExpandV2CompOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.shape = (-1, -1, -1, -1)
        self.expand_times = (1, 1, 1, 1)


# Situation 8: comp case, input x is Integer
class TestExpandV2CompOpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.prim_op_type = "comp"
        self.python_api = paddle.expand
        self.inputs = {
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output(check_prim=True)


#  Situation 9: comp case, input x is Bool
class TestExpandV2CompOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.prim_op_type = "comp"
        self.python_api = paddle.expand
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output(check_prim=True)


#  Situation 10: comp case, input x is Integer
class TestExpandV2CompOpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.prim_op_type = "comp"
        self.python_api = paddle.expand
        self.inputs = {
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output(check_prim=True)


437
if __name__ == "__main__":
H
hong 已提交
438
    paddle.enable_static()
439
    unittest.main()