inplace_abn_op.cu 8.1 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/inplace_abn_op.h"
16
#include <iostream>
17
#include "paddle/fluid/operators/batch_norm_op.h"
H
hong 已提交
18 19
#include "paddle/phi/kernels/batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
20 21 22
#include "paddle/phi/kernels/gpu/sync_batch_norm_utils.h"
#include "paddle/phi/kernels/sync_batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/sync_batch_norm_kernel.h"
K
Kaipeng Deng 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
28
class InplaceABNKernel : public framework::OpKernel<T> {
K
Kaipeng Deng 已提交
29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* y = ctx.Output<Tensor>("Y");
    auto* x = ctx.Input<Tensor>("X");
33 34
    PADDLE_ENFORCE_EQ(x,
                      y,
35 36
                      platform::errors::InvalidArgument(
                          "X and Y not inplaced in inplace mode"));
K
Kaipeng Deng 已提交
37 38 39 40
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* variance = ctx.Input<Tensor>("Variance");

    auto momentum = ctx.Attr<float>("momentum");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto data_layout = ctx.Attr<std::string>("data_layout");
    auto is_test = ctx.Attr<bool>("is_test");
    auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
    auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

    auto* mean_out = ctx.Output<Tensor>("MeanOut");
    auto* variance_out = ctx.Output<Tensor>("VarianceOut");
    auto* saved_mean = ctx.Output<Tensor>("SavedMean");
    auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
    auto* reserve_space = ctx.Output<Tensor>("ReserveSpace");

K
Kaipeng Deng 已提交
60
    if (ctx.Attr<bool>("use_sync_bn")) {
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::SyncBatchNormKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
          *x,
          *scale,
          *bias,
          *mean,
          *variance,
          momentum,
          epsilon,
          data_layout,
          is_test,
          use_global_stats,
          trainable_statistics,
          fuse_with_relu,
          y,
          mean_out,
          variance_out,
          saved_mean,
          saved_variance,
          reserve_space);
K
Kaipeng Deng 已提交
83
    } else {
H
hong 已提交
84 85 86 87
      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
          *x,
          *scale,
          *bias,
          *mean,
          *variance,
          momentum,
          epsilon,
          data_layout,
          is_test,
          use_global_stats,
          trainable_statistics,
          fuse_with_relu,
          y,
          mean_out,
          variance_out,
          saved_mean,
          saved_variance,
          reserve_space);
K
Kaipeng Deng 已提交
106 107 108 109 110 111 112 113 114 115 116
    }

    auto cur_y = EigenVector<T>::Flatten(*y);
    InplaceABNActivation<DeviceContext, T> functor;
    functor.Compute(ctx, activation, place, cur_y, cur_y);
  }
};

// Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/
template <typename DeviceContext, typename T>
117
class InplaceABNGradKernel : public framework::OpKernel<T> {
K
Kaipeng Deng 已提交
118 119 120 121 122
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* y = ctx.Input<Tensor>("Y");
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
123 124
    PADDLE_ENFORCE_EQ(d_x,
                      d_y,
K
Kaipeng Deng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138
                      platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD not inplaced in inplace mode"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));

    auto py = *y;
    auto pd_y = *d_y;
    auto cur_y = EigenVector<T>::Flatten(py);
    auto cur_dy = EigenVector<T>::Flatten(pd_y);

    InplaceABNActivation<DeviceContext, T> functor;
    functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* saved_mean = ctx.Input<Tensor>("SavedMean");
    auto* saved_variance = ctx.Input<Tensor>("SavedVariance");

    auto momentum = ctx.Attr<float>("momentum");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto data_layout = ctx.Attr<std::string>("data_layout");
    auto is_test = ctx.Attr<bool>("is_test");
    auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
    auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

    auto* scale_grad = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* bias_grad = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto* reserve_space = ctx.Input<Tensor>("ReserveSpace");
    auto* mean = ctx.Input<Tensor>("ReserveSpace");
    auto* variance = ctx.Input<Tensor>("ReserveSpace");

K
Kaipeng Deng 已提交
159
    if (ctx.Attr<bool>("use_sync_bn")) {
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::SyncBatchNormGradFunctor<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
          nullptr,
          y,
          *scale,
          *bias,
          *saved_mean,
          *saved_variance,
          *d_y,
          epsilon,
          data_layout,
          d_x,
          scale_grad,
          bias_grad);
K
Kaipeng Deng 已提交
176
    } else {
177 178 179
      paddle::optional<Tensor> space_opt;
      paddle::optional<Tensor> mean_opt;
      paddle::optional<Tensor> variance_opt;
H
hong 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

      if (reserve_space != nullptr) {
        space_opt = *reserve_space;
      }

      if (mean != nullptr) {
        mean_opt = *mean;
      }

      if (variance != nullptr) {
        variance_opt = *variance;
      }

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormGradRawKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
          *y,
          *scale,
          *bias,
          mean_opt,
          variance_opt,
          *saved_mean,
          *saved_variance,
          space_opt,
          *d_y,
          momentum,
          epsilon,
          data_layout,
          is_test,
          use_global_stats,
          trainable_statistics,
          fuse_with_relu,
          true,
          d_x,
          scale_grad,
          bias_grad);
K
Kaipeng Deng 已提交
217 218 219 220 221 222 223 224 225
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
226 227 228 229 230 231 232 233
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(inplace_abn,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    inplace_abn_grad,
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, float>);
#else
K
Kaipeng Deng 已提交
234 235 236 237
REGISTER_OP_CUDA_KERNEL(inplace_abn,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, float>,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
238 239
    inplace_abn_grad,
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, float>,
K
Kaipeng Deng 已提交
240
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, double>);
241
#endif