inplace_abn_op.cu 6.9 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/inplace_abn_op.h"
#include "paddle/fluid/operators/sync_batch_norm_op.cu.h"
H
hong 已提交
18 19
#include "paddle/phi/kernels/batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
K
Kaipeng Deng 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class InplaceABNKernel
H
hong 已提交
26
    : public paddle::operators::SyncBatchNormKernel<DeviceContext, T> {
K
Kaipeng Deng 已提交
27 28 29 30
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* y = ctx.Output<Tensor>("Y");
    auto* x = ctx.Input<Tensor>("X");
31 32 33
    PADDLE_ENFORCE_EQ(x, y,
                      platform::errors::InvalidArgument(
                          "X and Y not inplaced in inplace mode"));
K
Kaipeng Deng 已提交
34 35 36 37 38 39 40
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

    if (ctx.Attr<bool>("use_sync_bn")) {
      SyncBatchNormKernel<DeviceContext, T>::Compute(ctx);
    } else {
H
hong 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
      // BatchNormKernel<DeviceContext, T>::Compute(ctx);
      auto* scale = ctx.Input<Tensor>("Scale");
      auto* bias = ctx.Input<Tensor>("Bias");
      auto* mean = ctx.Input<Tensor>("Mean");
      auto* variance = ctx.Input<Tensor>("Variance");

      auto momentum = ctx.Attr<float>("momentum");
      auto epsilon = ctx.Attr<float>("epsilon");
      auto data_layout = ctx.Attr<std::string>("data_layout");
      auto is_test = ctx.Attr<bool>("is_test");
      auto use_global_stats = ctx.Attr<bool>("use_global_stats");
      auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
      auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

      auto* mean_out = ctx.Output<Tensor>("MeanOut");
      auto* variance_out = ctx.Output<Tensor>("VarianceOut");
      auto* saved_mean = ctx.Output<Tensor>("SavedMean");
      auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
      auto* reserve_space = ctx.Output<Tensor>("ReserveSpace");

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
          *x, *scale, *bias, *mean, *variance, momentum, epsilon, data_layout,
          is_test, use_global_stats, trainable_statistics, fuse_with_relu, y,
          mean_out, variance_out, saved_mean, saved_variance, reserve_space);
K
Kaipeng Deng 已提交
68 69 70 71 72 73 74 75 76 77 78 79
    }

    auto cur_y = EigenVector<T>::Flatten(*y);
    InplaceABNActivation<DeviceContext, T> functor;
    functor.Compute(ctx, activation, place, cur_y, cur_y);
  }
};

// Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/
template <typename DeviceContext, typename T>
class InplaceABNGradKernel
H
hong 已提交
80
    : public paddle::operators::SyncBatchNormGradKernel<DeviceContext, T> {
K
Kaipeng Deng 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* y = ctx.Input<Tensor>("Y");
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    PADDLE_ENFORCE_EQ(d_x, d_y,
                      platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD not inplaced in inplace mode"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));

    auto py = *y;
    auto pd_y = *d_y;
    auto cur_y = EigenVector<T>::Flatten(py);
    auto cur_dy = EigenVector<T>::Flatten(pd_y);

    InplaceABNActivation<DeviceContext, T> functor;
    functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);

    if (ctx.Attr<bool>("use_sync_bn")) {
      SyncBatchNormGradKernel<DeviceContext, T>::Compute(ctx);
    } else {
H
hong 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
      auto* scale = ctx.Input<Tensor>("Scale");
      auto* bias = ctx.Input<Tensor>("Bias");
      auto* saved_mean = ctx.Input<Tensor>("SavedMean");
      auto* saved_variance = ctx.Input<Tensor>("SavedVariance");

      auto momentum = ctx.Attr<float>("momentum");
      auto epsilon = ctx.Attr<float>("epsilon");
      auto data_layout = ctx.Attr<std::string>("data_layout");
      auto is_test = ctx.Attr<bool>("is_test");
      auto use_global_stats = ctx.Attr<bool>("use_global_stats");
      auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
      auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

      auto* scale_grad = ctx.Output<Tensor>(framework::GradVarName("Scale"));
      auto* bias_grad = ctx.Output<Tensor>(framework::GradVarName("Bias"));

      auto* reserve_space = ctx.Input<Tensor>("ReserveSpace");
      auto* mean = ctx.Input<Tensor>("ReserveSpace");
      auto* variance = ctx.Input<Tensor>("ReserveSpace");

124 125 126
      paddle::optional<Tensor> space_opt;
      paddle::optional<Tensor> mean_opt;
      paddle::optional<Tensor> variance_opt;
H
hong 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

      if (reserve_space != nullptr) {
        space_opt = *reserve_space;
      }

      if (mean != nullptr) {
        mean_opt = *mean;
      }

      if (variance != nullptr) {
        variance_opt = *variance;
      }

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormGradRawKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
H
hong 已提交
144 145 146 147
          *y, *scale, *bias, mean_opt, variance_opt, *saved_mean,
          *saved_variance, space_opt, *d_y, momentum, epsilon, data_layout,
          is_test, use_global_stats, trainable_statistics, fuse_with_relu, true,
          d_x, scale_grad, bias_grad);
K
Kaipeng Deng 已提交
148 149 150 151 152 153 154 155 156
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
157 158 159 160 161 162 163 164
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(inplace_abn,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    inplace_abn_grad,
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, float>);
#else
K
Kaipeng Deng 已提交
165 166 167 168 169 170
REGISTER_OP_CUDA_KERNEL(inplace_abn,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, float>,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    inplace_abn_grad, ops::InplaceABNGradKernel<plat::CUDADeviceContext, float>,
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, double>);
171
#endif