inplace_abn_op.cu 7.3 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/inplace_abn_op.h"
16
#include "paddle/fluid/operators/batch_norm_op.h"
K
Kaipeng Deng 已提交
17
#include "paddle/fluid/operators/sync_batch_norm_op.cu.h"
H
hong 已提交
18 19
#include "paddle/phi/kernels/batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
K
Kaipeng Deng 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class InplaceABNKernel
H
hong 已提交
26
    : public paddle::operators::SyncBatchNormKernel<DeviceContext, T> {
K
Kaipeng Deng 已提交
27 28 29 30
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* y = ctx.Output<Tensor>("Y");
    auto* x = ctx.Input<Tensor>("X");
31 32
    PADDLE_ENFORCE_EQ(x,
                      y,
33 34
                      platform::errors::InvalidArgument(
                          "X and Y not inplaced in inplace mode"));
K
Kaipeng Deng 已提交
35 36 37 38 39 40 41
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

    if (ctx.Attr<bool>("use_sync_bn")) {
      SyncBatchNormKernel<DeviceContext, T>::Compute(ctx);
    } else {
H
hong 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
      // BatchNormKernel<DeviceContext, T>::Compute(ctx);
      auto* scale = ctx.Input<Tensor>("Scale");
      auto* bias = ctx.Input<Tensor>("Bias");
      auto* mean = ctx.Input<Tensor>("Mean");
      auto* variance = ctx.Input<Tensor>("Variance");

      auto momentum = ctx.Attr<float>("momentum");
      auto epsilon = ctx.Attr<float>("epsilon");
      auto data_layout = ctx.Attr<std::string>("data_layout");
      auto is_test = ctx.Attr<bool>("is_test");
      auto use_global_stats = ctx.Attr<bool>("use_global_stats");
      auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
      auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

      auto* mean_out = ctx.Output<Tensor>("MeanOut");
      auto* variance_out = ctx.Output<Tensor>("VarianceOut");
      auto* saved_mean = ctx.Output<Tensor>("SavedMean");
      auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
      auto* reserve_space = ctx.Output<Tensor>("ReserveSpace");

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
          *x,
          *scale,
          *bias,
          *mean,
          *variance,
          momentum,
          epsilon,
          data_layout,
          is_test,
          use_global_stats,
          trainable_statistics,
          fuse_with_relu,
          y,
          mean_out,
          variance_out,
          saved_mean,
          saved_variance,
          reserve_space);
K
Kaipeng Deng 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    }

    auto cur_y = EigenVector<T>::Flatten(*y);
    InplaceABNActivation<DeviceContext, T> functor;
    functor.Compute(ctx, activation, place, cur_y, cur_y);
  }
};

// Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/
template <typename DeviceContext, typename T>
class InplaceABNGradKernel
H
hong 已提交
96
    : public paddle::operators::SyncBatchNormGradKernel<DeviceContext, T> {
K
Kaipeng Deng 已提交
97 98 99 100 101
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* y = ctx.Input<Tensor>("Y");
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
102 103
    PADDLE_ENFORCE_EQ(d_x,
                      d_y,
K
Kaipeng Deng 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                      platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD not inplaced in inplace mode"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));

    auto py = *y;
    auto pd_y = *d_y;
    auto cur_y = EigenVector<T>::Flatten(py);
    auto cur_dy = EigenVector<T>::Flatten(pd_y);

    InplaceABNActivation<DeviceContext, T> functor;
    functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);

    if (ctx.Attr<bool>("use_sync_bn")) {
      SyncBatchNormGradKernel<DeviceContext, T>::Compute(ctx);
    } else {
H
hong 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
      auto* scale = ctx.Input<Tensor>("Scale");
      auto* bias = ctx.Input<Tensor>("Bias");
      auto* saved_mean = ctx.Input<Tensor>("SavedMean");
      auto* saved_variance = ctx.Input<Tensor>("SavedVariance");

      auto momentum = ctx.Attr<float>("momentum");
      auto epsilon = ctx.Attr<float>("epsilon");
      auto data_layout = ctx.Attr<std::string>("data_layout");
      auto is_test = ctx.Attr<bool>("is_test");
      auto use_global_stats = ctx.Attr<bool>("use_global_stats");
      auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
      auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

      auto* scale_grad = ctx.Output<Tensor>(framework::GradVarName("Scale"));
      auto* bias_grad = ctx.Output<Tensor>(framework::GradVarName("Bias"));

      auto* reserve_space = ctx.Input<Tensor>("ReserveSpace");
      auto* mean = ctx.Input<Tensor>("ReserveSpace");
      auto* variance = ctx.Input<Tensor>("ReserveSpace");

141 142 143
      paddle::optional<Tensor> space_opt;
      paddle::optional<Tensor> mean_opt;
      paddle::optional<Tensor> variance_opt;
H
hong 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

      if (reserve_space != nullptr) {
        space_opt = *reserve_space;
      }

      if (mean != nullptr) {
        mean_opt = *mean;
      }

      if (variance != nullptr) {
        variance_opt = *variance;
      }

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormGradRawKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
          *y,
          *scale,
          *bias,
          mean_opt,
          variance_opt,
          *saved_mean,
          *saved_variance,
          space_opt,
          *d_y,
          momentum,
          epsilon,
          data_layout,
          is_test,
          use_global_stats,
          trainable_statistics,
          fuse_with_relu,
          true,
          d_x,
          scale_grad,
          bias_grad);
K
Kaipeng Deng 已提交
181 182 183 184 185 186 187 188 189
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
190 191 192 193 194 195 196 197
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(inplace_abn,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    inplace_abn_grad,
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, float>);
#else
K
Kaipeng Deng 已提交
198 199 200 201
REGISTER_OP_CUDA_KERNEL(inplace_abn,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, float>,
                        ops::InplaceABNKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
202 203
    inplace_abn_grad,
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, float>,
K
Kaipeng Deng 已提交
204
    ops::InplaceABNGradKernel<plat::CUDADeviceContext, double>);
205
#endif