executor.py 42.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
H
Huihuang Zheng 已提交
25
from .framework import Program, default_main_program, Variable, convert_np_dtype_to_dtype_
26
from . import core
27 28
from . import compiler
from .. import compat as cpt
29
from .trainer_factory import TrainerFactory
30

T
Tink_Y 已提交
31
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
g_scope = core.Scope()
F
flame 已提交
34 35
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
36

Y
Yu Yang 已提交
37

Y
Yang Yu 已提交
38
def global_scope():
Y
yuyang18 已提交
39 40 41 42
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

43 44 45 46 47 48 49 50 51
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())

Y
yuyang18 已提交
52 53 54
    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
55 56 57
    return g_scope


58
def _switch_scope(scope):
Y
Yang Yu 已提交
59 60 61 62 63 64
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
65
@signature_safe_contextmanager
Y
Yang Yu 已提交
66
def scope_guard(scope):
Y
yuyang18 已提交
67 68 69 70
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

L
lujun 已提交
71 72 73
    Args:
        scope: The new global/default scope.

Y
yuyang18 已提交
74
    Examples:
75 76
        .. code-block:: python

77
            import paddle.fluid as fluid
L
lujun 已提交
78
            import numpy
Y
yuyang18 已提交
79

L
lujun 已提交
80 81 82 83
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
84
    """
L
lujun 已提交
85

86
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
87
    yield
88
    _switch_scope(ex)
Y
Yang Yu 已提交
89 90


D
dzhwinter 已提交
91
def as_numpy(tensor):
92 93 94
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
95

96
    Examples:
97 98 99 100 101 102 103 104 105 106
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
107 108 109 110 111 112 113

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
114 115
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
116 117 118 119
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
120
    if len(lod) > 0:
D
dzhwinter 已提交
121
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
122 123 124
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
125 126 127 128
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
129 130


H
Huihuang Zheng 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


def check_feed_shape_type(var, feed):
    """
    Returns True if the variable doesn't require feed check or it is compatible
    with the shape and have same dtype as the feeded value.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
        feed (LoDTensor): the feeded value, which must be a LoDTensor
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
        if not dimension_is_compatible_with(feed.shape(), var.shape):
            raise ValueError('Cannot feed value of shape %r for Variable %r, '
                             'which has shape %r' %
                             (feed.shape, var.name, var.shape))
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
            raise ValueError('Cannot feed value of type %r for Variable %r, '
                             'which has type %r' %
                             (feed._dtype(), var.name, var.dtype))
    return True


216 217 218 219 220 221 222 223 224 225 226 227
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
228 229
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
230 231 232
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
233
        A boolean value that indicates whether a block has feed operators
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
256

257 258 259 260 261 262 263 264 265
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
266 267 268
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
269

X
xuwei06 已提交
270 271 272
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
294
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
295
    """
C
chengduoZH 已提交
296 297 298
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
299
    Args:
300 301 302 303
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
304 305 306 307
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
308 309 310 311 312 313
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
314
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
315

Y
Yibing Liu 已提交
316
    var = scope.find_var(name)
317 318 319 320
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
321 322 323 324 325 326
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
327 328 329 330 331 332 333 334 335
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
336 337


338 339 340 341
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
342 343 344
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
345 346 347 348

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


Y
Yu Yang 已提交
380
class Executor(object):
381
    """
382 383 384 385 386 387 388 389 390 391 392
    An Executor in Python, supports single/multiple-GPU running,
    and single/multiple-CPU running. Python executor takes a program,
    adds feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the
    program. fetch_list provides the variables(or names) that user wants
    to get after program runs. Note: the executor will run all operators
    in the program but not only the operators dependent by the fetch_list.
    It stores the global variables into the global scope, and creates a
    local scope for the temporary variables. The contents in local scope
    may be discarded after every minibatch forward/backward finished.
    But the global scope variables will be persistent through different runs.
S
Fix doc  
sneaxiy 已提交
393

394
    Examples:
S
Fix doc  
sneaxiy 已提交
395 396
        .. code-block:: python

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
442

443
    Args:
444 445
        place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device.

446 447
    """

D
dzhwinter 已提交
448 449
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
450
        self.program_caches = dict()
451
        self.ctx_caches = dict()
452 453
        self.scope_caches = dict()
        self.var_caches = dict()
454 455 456
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
457
        self._closed = False
D
dzhwinter 已提交
458

459 460 461 462 463 464
    def _get_var_cache(self, program_cache_key):
        return self.var_caches.get(program_cache_key, None)

    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

465 466 467
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
468 469 470 471 472 473
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

474 475 476
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

477 478 479 480 481 482
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

    def _add_var_cache(self, var_cache_key, var):
        self.var_caches[var_cache_key] = var

Q
Qiao Longfei 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
509
                global_block._prepend_op(
Q
Qiao Longfei 已提交
510 511 512 513 514 515 516 517
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
518 519 520
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
521 522 523 524 525 526 527 528 529 530
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
531 532
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
533 534 535 536
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
537
                    cur_feed = _as_lodtensor(cur_feed, self.place)
H
Huihuang Zheng 已提交
538 539
                var = global_block.var(feed_target_name)
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
540 541 542 543 544 545 546 547
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
548
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
549 550 551
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
552 553 554 555 556 557
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
558 559 560 561
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
562
        You can no longer use this executor after calling this method.
563 564 565 566 567 568 569 570 571 572 573 574
        For the distributed training, this method would free the resource
        on PServers related to the current Trainer.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
575
        """
576 577
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
578
            self._closed = True
Y
Yancey1989 已提交
579

X
fix  
Xin Pan 已提交
580
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
581
                      return_numpy):
582
        exe = program._executor
H
Huihuang Zheng 已提交
583 584 585 586 587
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
588 589 590 591 592 593
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
594
                    # always set to CPU place, since the tensor need to be split
595
                    # it is fast in CPU
596 597 598
                    assert isinstance( feed[feed_name], np.ndarray ), \
                        "The input({}) should be numpy.array, but not {}.".format(
                        feed_name, type(feed[feed_name]))
599
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
H
Huihuang Zheng 已提交
600 601 602
                if need_check_feed:
                    var = global_block.var(feed_name)
                    check_feed_shape_type(var, feed_tensor)
603 604
                feed_tensor_dict[feed_name] = feed_tensor

605
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
606
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
607
            if len(feed) != len(program._places):
608 609 610 611 612 613 614 615 616 617 618 619 620 621
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
622 623 624
                        assert isinstance(each[feed_name], np.ndarray), \
                            "The input({}) should be numpy.array, but not {}.".format(
                            feed_name, type(each[feed_name]))
X
fix  
Xin Pan 已提交
625
                        tmp.set(tensor, program._places[i])
626
                        tensor = tmp
H
Huihuang Zheng 已提交
627 628 629
                    if need_check_feed:
                        var = global_block.var(feed_name)
                        check_feed_shape_type(var, tensor)
630 631
                    res_dict[feed_name] = tensor
                res.append(res_dict)
632
            exe.feed_tensors_into_local_scopes(res)
633

X
polish  
Xin Pan 已提交
634
        fetch_var_names = list(map(_to_name_str, fetch_list))
635
        tensors = exe.run(fetch_var_names)._move_to_list()
636
        return as_numpy(tensors) if return_numpy else tensors
637

Y
Yu Yang 已提交
638
    def run(self,
Y
Yu Yang 已提交
639
            program=None,
640 641
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
642
            feed_var_name='feed',
Y
Yu Yang 已提交
643
            fetch_var_name='fetch',
D
dzhwinter 已提交
644
            scope=None,
645 646
            return_numpy=True,
            use_program_cache=False):
647
        """
648 649 650 651
        Run program by this Executor. Feed data by feed map, fetch result by
        fetch_list. Python executor takes a program, add feed operators and
        fetch operators to this program according to feed map and fetch_list.
        Feed map provides input data for the program. fetch_list provides
652 653
        the variables(or names) that user want to get after program run.

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        Note: the executor will run all operators in the program but not
        only the operators dependent by the fetch_list.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Q
qiaolongfei 已提交
679

680
        Args:
X
add doc  
Xin Pan 已提交
681
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
682
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
683
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
684 685 686 687 688 689 690 691
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
692
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
693 694 695 696 697 698
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
699 700 701
        Returns:

            list(numpy.array): fetch result according to fetch_list.
702
        """
C
chengduo 已提交
703 704 705 706 707 708 709 710 711 712 713 714
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
        except Exception as e:
            if not isinstance(e, core.EOFException):
715
                print("!!!A non-EOF exception is thrown.")
716
            six.reraise(*sys.exc_info())
C
chengduo 已提交
717 718 719

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
                  fetch_var_name, scope, return_numpy, use_program_cache):
Y
Yancey1989 已提交
720 721 722
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
723
        use_default_main_program = program is None
724 725
        if program is None:
            program = default_main_program()
C
chengduo 已提交
726
        if isinstance(program, Program) and \
727
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
728 729 730 731
            error_info = "The current program is empty."
            if use_default_main_program:
                error_info += " Maybe you should pass the Program or the CompiledProgram manually."
            warnings.warn(error_info)
732

733 734
        if scope is None:
            scope = global_scope()
735 736 737 738 739 740 741 742 743

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
744
            fetch_list = []
745

X
polish  
Xin Pan 已提交
746
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
747

X
polish  
Xin Pan 已提交
748
        # For backward compatibility, run directly.
749
        if not compiled:
C
chengduo 已提交
750
            return self._run_program(
751 752 753 754 755 756 757 758 759 760
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
761 762 763
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
764
            return self._run_parallel(
X
fix  
Xin Pan 已提交
765
                program,
766 767 768
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
769
                fetch_var_name=fetch_var_name,
770 771
                return_numpy=return_numpy)

C
chengduo 已提交
772
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
773
                     fetch_var_name, scope, return_numpy, use_program_cache):
774

775 776
        if feed is None:
            feed = {}
S
sneaxiy 已提交
777 778 779 780
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
781
        if not isinstance(feed, dict):
D
dzhwinter 已提交
782 783 784
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
785

786
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
787
        if not isinstance(program, Program):
D
dzhwinter 已提交
788 789 790
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
791

792
        if use_program_cache:
793
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
794
            cached_program = self._get_program_cache(cache_key)
795
            cached_ctx = self._get_ctx_cache(cache_key)
796 797
            cached_scope = self._get_scope_cache(cache_key)
            cached_var = self._get_var_cache(cache_key)
Q
Qiao Longfei 已提交
798 799 800 801 802 803 804 805
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
806
                fetch_list_str = list(map(_to_name_str, fetch_list))
807
                cached_ctx = self._default_executor.prepare_ctx_cache(
808 809 810 811 812 813 814 815 816
                    cached_program.desc, 0, fetch_list_str, False)
                cached_var = self._default_executor.create_variables(
                    cached_program.desc, scope, 0)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
817
                self._add_ctx_cache(cache_key, cached_ctx)
818 819
                self._add_var_cache(cache_key, cached_var)
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
820
            program = cached_program
821
            ctx = cached_ctx
822 823
            scope = cached_scope
            var = cached_var
824
        else:
Q
Qiao Longfei 已提交
825 826 827 828 829 830 831 832
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
833
        if not use_program_cache:
C
chengduo 已提交
834 835
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
836
        else:
C
chengduo 已提交
837 838
            self._default_executor.run_cached_prepared_ctx(ctx, scope, False,
                                                           False, False)
839 840
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
841
        if return_numpy:
842 843 844
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
845

X
Xin Pan 已提交
846 847
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
848

849 850
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
851
            fout.write(str(trainer))
852 853 854 855
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

872 873 874 875 876 877 878 879 880
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
881 882 883 884
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
885 886 887
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
888 889
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
890 891 892 893 894 895
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
896
            trainer._set_program(program)
897
        else:
H
hutuxian 已提交
898 899 900 901 902 903
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
904
            trainer._set_program(program.program)
H
hutuxian 已提交
905

906
        if thread <= 0:
D
dongdaxiang 已提交
907 908
            if dataset.thread_num <= 0:
                raise RuntimeError(
909 910
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
911
            else:
912
                trainer._set_thread(dataset.thread_num)
913
        else:
914
            trainer._set_thread(thread)
H
hutuxian 已提交
915

916 917
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
918
        return scope, trainer
919 920 921 922 923 924

    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
925 926 927 928
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
929 930 931 932 933 934
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
935

936 937 938 939 940
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
941
               Please check the document of Dataset if needed. default is None
942 943 944
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
945 946
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
947
            fetch_list(Variable List): fetch variable list, each variable
948 949 950
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
951

952 953 954 955
        Returns:
            None

        Examples:
956 957

            .. code-block:: python
958

959
                import paddle.fluid as fluid
960 961

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
962
                exe = fluid.Executor(place)
963 964
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
965 966
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
967 968
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
969 970 971 972
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
973

974
        """
975 976 977
        if dataset == None:
            raise RuntimeError("dataset is needed and should be initialized")

J
jiaqi 已提交
978
        dataset._prepare_to_run()
979
        scope, trainer = self._prepare_trainer(
980 981 982 983 984 985 986 987
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
988
        trainer._set_infer(True)
989
        trainer._gen_trainer_desc()
990
        self._dump_debug_info(program=program, trainer=trainer)
991
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
992 993 994
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
995
        dataset._dynamic_adjust_after_train()
J
jiaqi 已提交
996
        dataset._finish_to_run()
997
        return None
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
1034 1035 1036

        Returns:
            None
1037
        
1038
        Examples:
1039
        
1040 1041 1042
            .. code-block:: python

              import paddle.fluid as fluid
1043 1044

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1045
              exe = fluid.Executor(place)
1046 1047
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1048 1049
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1050 1051
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1052 1053 1054 1055
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1056 1057

        """
1058 1059 1060
        if dataset == None:
            raise RuntimeError("dataset is need and should be initialized")

H
hutuxian 已提交
1061
        if program._pipeline_opt:
1062 1063 1064
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

J
jiaqi 已提交
1065
        dataset._prepare_to_run()
1066
        scope, trainer = self._prepare_trainer(
1067 1068 1069 1070 1071 1072 1073 1074
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1075
        trainer._gen_trainer_desc()
1076
        self._dump_debug_info(program=program, trainer=trainer)
1077
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
D
dongdaxiang 已提交
1078 1079 1080
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
1081
        dataset._dynamic_adjust_after_train()
J
jiaqi 已提交
1082
        dataset._finish_to_run()
1083
        return None