Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3641a78b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3641a78b
编写于
3月 13, 2019
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add incubate for unified API
上级
e657c127
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
3091 addition
and
5 deletion
+3091
-5
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+5
-5
python/paddle/fluid/incubate/fleet/__init__.py
python/paddle/fluid/incubate/fleet/__init__.py
+14
-0
python/paddle/fluid/incubate/fleet/base/__init__.py
python/paddle/fluid/incubate/fleet/base/__init__.py
+12
-0
python/paddle/fluid/incubate/fleet/base/role_maker.py
python/paddle/fluid/incubate/fleet/base/role_maker.py
+119
-0
python/paddle/fluid/incubate/fleet/p2p/__init__.py
python/paddle/fluid/incubate/fleet/p2p/__init__.py
+12
-0
python/paddle/fluid/incubate/fleet/parameter_server/__init__.py
.../paddle/fluid/incubate/fleet/parameter_server/__init__.py
+145
-0
python/paddle/fluid/incubate/fleet/parameter_server/node.py
python/paddle/fluid/incubate/fleet/parameter_server/node.py
+203
-0
python/paddle/fluid/incubate/fleet/parameter_server/optimizer_factory.py
...luid/incubate/fleet/parameter_server/optimizer_factory.py
+155
-0
python/paddle/fluid/incubate/fleet/parameter_server/ps_pb2.py
...on/paddle/fluid/incubate/fleet/parameter_server/ps_pb2.py
+2426
-0
未找到文件。
python/paddle/fluid/executor.py
浏览文件 @
3641a78b
...
...
@@ -644,8 +644,8 @@ class Executor(object):
trainer
.
set_thread
(
dataset
.
thread_num
)
else
:
trainer
.
set_thread
(
thread
)
trainer
.
gen_trainer_desc
()
dataset
.
_prepare_to_run
()
self
.
_default_executor
.
run_from_dataset
(
program
.
desc
,
scope
,
dataset
.
dataset
,
trainer
.
_desc
())
trainer
.
gen_trainer_desc
()
dataset
.
_prepare_to_run
()
self
.
_default_executor
.
run_from_dataset
(
program
.
desc
,
scope
,
dataset
.
dataset
,
trainer
.
_desc
())
python/paddle/fluid/incubate/fleet/__init__.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
__version__
=
'0.1.0'
python/paddle/fluid/incubate/fleet/base/__init__.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
python/paddle/fluid/incubate/fleet/base/role_maker.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.helper
import
MPIHelper
class
RoleMakerBase
(
object
):
def
__init__
(
self
):
self
.
role_maker_name_
=
""
self
.
trainer_endpoints_
=
[]
self
.
pserver_endpoints_
=
[]
def
is_worker
(
self
):
raise
NotImplementedError
(
"Please implement this method in child class"
)
def
is_server
(
self
):
raise
NotImplementedError
(
"Please implement this method in child class"
)
def
get_local_ip
(
self
):
import
socket
self
.
ip_
=
socket
.
gethostbyname
(
socket
.
gethostname
())
return
self
.
ip_
def
get_trainer_endpoints
(
self
):
return
self
.
trainer_endpoints_
def
get_pserver_endpoints
(
self
):
return
self
.
pserver_endpoints_
def
generate_role
(
self
):
raise
NotImplementedError
(
"Please implement this method in child class"
)
class
MPIRoleMaker
(
RoleMakerBase
):
def
__init__
(
self
):
from
mpi4py
import
MPI
self
.
comm_
=
MPI
.
COMM_WORLD
self
.
MPI
=
MPI
def
get_rank
(
self
):
self
.
rank_
=
self
.
comm_
.
Get_rank
()
return
self
.
rank_
def
get_size
(
self
):
self
.
size_
=
self
.
comm_
.
Get_size
()
return
self
.
size_
def
all_gather
(
self
,
obj
):
self
.
barrier_all
()
return
self
.
comm_
.
allgather
(
obj
)
def
barrier_all
(
self
):
self
.
comm_
.
barrier
()
def
get_ips
(
self
):
if
self
.
ips_
==
None
:
self
.
ips_
=
self
.
comm_
.
allgather
(
self
.
get_local_ip
())
return
self
.
ips_
def
finalize
(
self
):
self
.
comm_
.
finalize
()
class
MPISymetricRoleMaker
(
MPIRoleMaker
):
def
__init__
(
self
):
super
(
MPISymetricRoleMaker
,
self
).
__init__
()
self
.
node_type_
=
None
self
.
proc_per_node_
=
2
def
is_first_worker
(
self
):
return
self
.
is_worker
()
and
0
==
self
.
worker_index
()
def
is_worker
(
self
):
return
self
.
node_type_
==
1
def
is_server
(
self
):
return
self
.
node_type_
==
0
def
worker_num
(
self
):
if
self
.
is_worker
():
return
self
.
get_size
()
def
server_num
(
self
):
if
self
.
is_server
():
return
self
.
get_size
()
def
worker_index
(
self
):
return
self
.
rank
/
self
.
proc_per_node_
def
server_index
(
self
):
return
self
.
rank
/
self
.
proc_per_node_
def
barrier_worker
(
self
):
if
self
.
is_worker
():
self
.
node_type_comm_
.
barrier
()
def
barrier_server
(
self
):
if
self
.
is_server
():
self
.
node_type_comm_
.
barrier
()
def
generate_role
(
self
):
self
.
trainer_endpoints_
=
self
.
get_ips
()
self
.
pserver_endpoints_
=
self
.
get_ips
()
if
0
==
self
.
get_rank
()
%
self
.
proc_per_node_
%
2
:
self
.
node_type_
=
0
else
:
self
.
node_type_
=
1
self
.
node_type_comm_
=
self
.
comm_
.
Split
(
self
.
node_type_
)
python/paddle/fluid/incubate/fleet/p2p/__init__.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
python/paddle/fluid/incubate/fleet/parameter_server/__init__.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
sys
import
os
from
..base.role_maker
import
MPISymetricRoleMaker
from
paddle.fluid.optimizer
import
Optimizer
# this is a temporary solution
# TODO(guru4elephant)
# will make this more flexible for more Parameter Server Archs
fleet_instance
=
Fleet
()
init
=
fleet_instance
.
init
stop
=
fleet_instance
.
stop
init_pserver
=
fleet_instance
.
init_pserver
init_worker
=
fleet_instance
.
init_worker
init_pserver_model
=
fleet_instance
.
init_pserver_model
save_pserver_model
=
fleet_instance
.
save_pserver_model
class
Fleet
(
object
):
"""
"""
def
__init__
(
self
):
self
.
opt_info
=
None
# for fleet only
self
.
role_maker_
=
None
def
init
(
self
):
# TODO(guru4elephant)
# this is a temporary solution
# we will support more configurable RoleMaker for users in the future
self
.
role_maker_
=
MPISymetricRoleMaker
()
self
.
role_maker_
.
generate_role
()
self
.
_fleet_ptr
=
core
.
FleetWrapper
()
def
stop
(
self
):
self
.
role_maker_
.
barrier_worker
()
if
self
.
role_maker_
.
is_first_worker
():
self
.
_fleet_ptr
.
stop_server
()
self
.
role_maker_
.
barrier_worker
()
self
.
role_maker_
.
barrier_all
()
self
.
role_maker_
.
finalize
()
def
init_pserver
(
self
):
if
self
.
_opt_info
:
if
"fleet_desc"
in
self
.
_opt_info
:
self
.
_dist_desc_str
=
text_format
.
MessageToString
(
self
.
_opt_info
[
"fleet_desc"
])
self
.
_dist_desc
=
self
.
_opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
self
.
_fleet_ptr
.
init_server
(
self
.
_dist_desc_str
)
ip
=
self
.
_fleet_ptr
.
start_server
()
ips
=
self
.
role_maker_
.
all_gather
(
ip
)
self
.
_fleet_ptr
.
gather_servers
(
ips
,
self
.
role_maker_
.
get_size
())
self
.
role_maker_
.
barrier_all
()
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
def
init_worker
(
self
):
if
self
.
_opt_info
:
if
"fleet_desc"
in
self
.
_opt_info
:
self
.
_dist_desc_str
=
text_format
.
MessageToString
(
self
.
_opt_info
[
"fleet_desc"
])
self
.
_dist_desc
=
self
.
_opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
self
.
role_maker_
.
barrier_all
()
self
.
_fleet_ptr
.
init_work
(
self
.
dist_desc_str_
,
self
.
role_maker
.
get_ips
(),
self
.
role_maker_
.
get_size
(),
self
.
role_maker_
.
get_rank
())
self
.
role_maker_
.
barrier_worker
()
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
def
init_pserver_model
(
self
):
if
self
.
role_maker_
.
is_first_worker
():
self
.
_fleet_ptr
.
init_model
()
self
.
role_maker_
.
barrier_worker
()
def
save_pserver_model
(
self
,
save_path
):
self
.
_fleet_ptr
.
save_model
(
save_path
)
def
_set_opt_info
(
self
,
opt_info
):
self
.
_opt_info
=
opt_info
class
DistributedOptimizer
(
paddle
.
fluid
.
Optimizer
):
def
__init__
(
self
,
optimizer
,
dist_config
=
{}):
super
(
DistributedOptimizer
,
self
).
__init__
()
self
.
_optimizer
=
optimizer
self
.
_optimizer_name
=
"Distributed%s"
%
optimizer
.
type
.
capitalize
()
if
optimizer
.
type
!=
"adam"
:
print
(
"Currently, distributed optimizer only supports Adam"
"Will config built-in adam for you."
"We will support more functions in DistributedOptimizer"
,
sys
.
stderr
)
self
.
_optimizer_name
=
"DistributedAdam"
self
.
_distributed_optimizer
=
globals
()[
self
.
_optimizer_name
]()
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
pass
def
apply_gradients
(
self
,
params_grads
):
pass
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
param_grads
,
opt_info
=
\
self
.
_distributed_optimizer
.
minimize
(
self
.
_optimizer
,
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
fleet_instance
.
_set_opt_info
(
opt_info
)
return
[
a
,
b
]
python/paddle/fluid/incubate/fleet/parameter_server/node.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
ps_pb2
as
pslib
class
Server
(
object
):
"""
A Server basic class.
"""
def
__init__
(
self
):
pass
class
Worker
(
object
):
"""
A Worker basic class.
"""
def
__init__
(
self
):
pass
class
DownpourServer
(
Server
):
"""
DownpourServer class is used to generate server program_desc
Args:
server: it is pslib.ServerParameter()
Examples:
server = DownpourServer()
"""
def
__init__
(
self
):
self
.
server_
=
pslib
.
ServerParameter
()
self
.
server_
.
downpour_server_param
.
service_param
.
start_server_port
=
0
self
.
server_
.
downpour_server_param
.
service_param
.
server_class
=
"DownpourBrpcPsServer"
self
.
server_
.
downpour_server_param
.
service_param
.
client_class
=
"DownpourBrpcPsClient"
self
.
server_
.
downpour_server_param
.
service_param
.
service_class
=
"DownpourPsService"
self
.
server_
.
downpour_server_param
.
service_param
.
start_server_port
=
0
self
.
server_
.
downpour_server_param
.
service_param
.
server_thread_num
=
12
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_key_vars
,
slot_value_var
):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters.
\
Can be a float value
slot_key_vars(string): slot key id
slot_value_var(string): slot key value after embedding
Returns:
return None
"""
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_class
=
"DownpourSparseTable"
table
.
type
=
pslib
.
PS_SPARSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourFeatureValueAccessor"
table
.
accessor
.
sparse_sgd_param
.
learning_rate
=
learning_rate
table
.
accessor
.
sparse_sgd_param
.
initial_g2sum
=
3
table
.
accessor
.
sparse_sgd_param
.
initial_range
=
1e-4
table
.
accessor
.
sparse_sgd_param
.
weight_bounds
.
extend
([
-
10
,
10
])
table
.
accessor
.
embedx_dim
=
8
table
.
accessor
.
embedx_threshold
=
5
table
.
accessor
.
fea_dim
=
11
table
.
accessor
.
downpour_accessor_param
.
nonclk_coeff
=
0.1
table
.
accessor
.
downpour_accessor_param
.
click_coeff
=
2
table
.
accessor
.
downpour_accessor_param
.
base_threshold
=
0.2
table
.
accessor
.
downpour_accessor_param
.
delta_threshold
=
0.15
table
.
accessor
.
downpour_accessor_param
.
delta_keep_days
=
31
table
.
accessor
.
downpour_accessor_param
.
show_click_decay_rate
=
0.999
table
.
accessor
.
downpour_accessor_param
.
delete_threshold
=
0.8
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
param_var
,
grad_var
):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters.
\
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_class
=
"DownpourDenseTable"
table
.
type
=
pslib
.
PS_DENSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
dense_sgd_param
.
name
=
"adam"
table
.
accessor
.
dense_sgd_param
.
adam
.
learning_rate
=
learning_rate
table
.
accessor
.
dense_sgd_param
.
adam
.
avg_decay_rate
=
0.999993
table
.
accessor
.
dense_sgd_param
.
adam
.
ada_decay_rate
=
0.9999
table
.
accessor
.
dense_sgd_param
.
adam
.
ada_epsilon
=
1e-8
table
.
accessor
.
dense_sgd_param
.
adam
.
mom_decay_rate
=
0.99
table
.
accessor
.
dense_sgd_param
.
naive
.
learning_rate
=
0.0002
fea_dim
=
0
for
param
in
filter
(
lambda
x
:
x
.
name
.
find
(
"embedding"
)
==
-
1
,
param_var
):
fea_dim
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
,
1
)
table
.
accessor
.
fea_dim
=
fea_dim
def
add_data_norm_table
(
self
,
table_id
,
learning_rate
,
param_var
,
grad_var
):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters.
\
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_class
=
"DownpourDenseTable"
table
.
type
=
pslib
.
PS_DENSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
dense_sgd_param
.
name
=
"summary"
table
.
accessor
.
dense_sgd_param
.
summary
.
summary_decay_rate
=
0.999999
fea_dim
=
0
for
param
in
filter
(
lambda
x
:
x
.
name
.
find
(
"embedding"
)
==
-
1
,
param_var
):
fea_dim
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
,
1
)
table
.
accessor
.
fea_dim
=
fea_dim
def
get_desc
(
self
):
"""
Return downpour server program_desc
"""
return
self
.
server_
class
DownpourWorker
(
Worker
):
"""
DownpourWorker class is used to generate worker program_desc
Args:
window (int): push params frequency
worker: it is pslib.DownpourTrainerParameter
Examples:
worker = DownpourWorker(1)
"""
def
__init__
(
self
,
window
):
self
.
window
=
window
self
.
worker_
=
pslib
.
DownpourTrainerParameter
()
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_key_vars
,
slot_value_vars
):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters.
\
Can be a float value
slot_key_vars(string): slot key id
slot_value_var(string): slot key value after embedding
Returns:
return None
"""
table
=
self
.
worker_
.
sparse_table
.
add
()
table
.
table_id
=
table_id
table
.
slot_key
.
extend
([
var
.
name
for
var
in
slot_key_vars
])
table
.
slot_value
.
extend
([
var
.
name
for
var
in
slot_value_vars
])
table
.
slot_gradient
.
extend
(
[
var
.
name
+
"@GRAD"
for
var
in
slot_value_vars
])
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
param_vars
,
grad_vars
):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters.
\
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table
=
self
.
worker_
.
dense_table
.
add
()
table
.
table_id
=
table_id
table
.
dense_variable_name
.
extend
(
filter
(
lambda
x
:
x
.
find
(
"embedding"
)
==
-
1
,
[
p
.
name
for
p
in
param_vars
]))
table
.
dense_gradient_variable_name
.
extend
(
filter
(
lambda
x
:
x
.
find
(
"embedding"
)
==
-
1
,
[
g
.
name
for
g
in
grad_vars
]))
def
get_desc
(
self
):
"""
Return downpour worker program_desc
"""
return
self
.
worker_
python/paddle/fluid/incubate/fleet/parameter_server/optimizer_factory.py
0 → 100644
浏览文件 @
3641a78b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
"DistributedAdam"
]
import
ps_pb2
as
pslib
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table_inputs
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table_outputs
from
google.protobuf
import
text_format
class
DistributedOptimizerImplBase
(
object
):
def
__init__
(
self
):
pass
def
minimize
(
self
,
optimizer
,
losses
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
pass
class
DistributedAdam
(
DistributedOptimizerImplBase
):
def
__init__
(
self
):
# todo(guru4elephant): add more optimizers here as argument
# todo(guru4elephant): make learning_rate as a variable
self
.
learning_rate_
=
learning_rate
self
.
window_
=
window
self
.
type
=
"downpour"
self
.
data_norm_name
=
[
".batch_size"
,
".batch_square_sum"
,
".batch_sum"
,
".batch_size@GRAD"
,
".batch_square_sum@GRAD"
,
".batch_sum@GRAD"
]
def
minimize
(
self
,
optimizer
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
DownpounSGD is a distributed optimizer so
that user can call minimize to generate backward
operators and optimization operators within minmize function
Args:
loss(Variable): loss variable defined by user
startup_program(Program): startup program that defined by user
parameter_list(str list): parameter names defined by users
no_grad_set(set): a set of variables that is defined by users
so that these variables do not need gradient computation
Returns:
[optimize_ops, grads_and_weights]
"""
if
not
isinstance
(
loss
,
list
):
loss
=
[
loss
]
table_name
=
find_distributed_lookup_table
(
losses
[
0
].
block
.
program
)
prefetch_slots
=
find_distributed_lookup_table_inputs
(
losses
[
0
].
block
.
program
,
table_name
)
prefetch_slots_emb
=
find_distributed_lookup_table_outputs
(
losses
[
0
].
block
.
program
,
table_name
)
ps_param
=
pslib
.
PSParameter
()
server
=
DownpourServer
()
worker
=
DownpourWorker
(
self
.
window_
)
sparse_table_index
=
0
server
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
)
worker
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
)
dense_table_index
=
1
program_configs
=
[]
param_grads_list
=
[]
for
loss_index
in
range
(
len
(
losses
)):
program_config
=
ps_param
.
trainer_param
.
program_config
.
add
()
program_config
.
program_id
=
str
(
id
(
losses
[
loss_index
].
block
.
program
))
program_config
.
pull_sparse_table_id
.
extend
([
sparse_table_index
])
program_config
.
push_sparse_table_id
.
extend
([
sparse_table_index
])
params_grads
=
sorted
(
append_backward
(
losses
[
loss_index
],
parameter_list
,
no_grad_set
),
key
=
lambda
x
:
x
[
0
].
name
)
param_grads_list
.
append
(
params_grads
)
params
=
[]
grads
=
[]
data_norm_params
=
[]
data_norm_grads
=
[]
for
i
in
params_grads
:
is_data_norm_data
=
False
for
data_norm_name
in
self
.
data_norm_name
:
if
i
[
0
].
name
.
endswith
(
data_norm_name
):
is_data_norm_data
=
True
data_norm_params
.
append
(
i
[
0
])
if
not
is_data_norm_data
:
params
.
append
(
i
[
0
])
for
i
in
params_grads
:
is_data_norm_data
=
False
for
data_norm_grad
in
self
.
data_norm_name
:
if
i
[
0
].
name
.
endswith
(
data_norm_grad
):
is_data_norm_data
=
True
data_norm_grads
.
append
(
i
[
1
])
if
not
is_data_norm_data
:
grads
.
append
(
i
[
1
])
server
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
program_config
.
pull_dense_table_id
.
extend
([
dense_table_index
])
program_config
.
push_dense_table_id
.
extend
([
dense_table_index
])
if
len
(
data_norm_params
)
!=
0
and
len
(
data_norm_grads
)
!=
0
:
dense_table_index
+=
1
server
.
add_data_norm_table
(
dense_table_index
,
self
.
learning_rate_
,
data_norm_params
,
data_norm_grads
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
data_norm_params
,
data_norm_grads
)
program_config
.
pull_dense_table_id
.
extend
([
dense_table_index
])
program_config
.
push_dense_table_id
.
extend
([
dense_table_index
])
dense_table_index
+=
1
program_configs
.
append
(
program_config
)
ps_param
.
server_param
.
CopyFrom
(
server
.
get_desc
())
ps_param
.
trainer_param
.
CopyFrom
(
worker
.
get_desc
())
for
program_config
in
program_configs
:
ps_param
.
trainer_param
.
program_config
.
extend
([
program_config
])
# Todo(guru4elephant): figure out how to support more sparse parameters
# currently only support lookup_table
worker_skipped_ops
=
[
"lookup_table"
,
"lookup_table_grad"
]
ps_param
.
trainer_param
.
skip_op
.
extend
(
worker_skipped_ops
)
opt_info
=
{}
opt_info
[
"trainer"
]
=
"DistMultiTrainer"
opt_info
[
"device_worker"
]
=
"DownpourSGD"
opt_info
[
"optimizer"
]
=
"DownpourSGD"
opt_info
[
"fleet_desc"
]
=
ps_param
opt_info
[
"worker_skipped_ops"
]
=
worker_skipped_ops
for
loss
in
losses
:
loss
.
block
.
program
.
_fleet_opt
=
opt_info
return
None
,
param_grads_list
[
0
],
opt_info
python/paddle/fluid/incubate/fleet/parameter_server/ps_pb2.py
0 → 100644
浏览文件 @
3641a78b
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录