shuffle_channel_op.cc 5.2 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
S
shippingwang 已提交
15 16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
24 25
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ShuffleChannelOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ShuffleChannelOp");
S
shippingwang 已提交
26 27

    auto input_dims = ctx->GetInputDim("X");
28 29 30
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 4,
        platform::errors::InvalidArgument("The layout of input is NCHW."));
S
shippingwang 已提交
31 32 33

    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
38 39 40 41 42 43 44 45 46 47 48
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
S
shippingwang 已提交
49
  }
S
shippingwang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
64 65
          PADDLE_ENFORCE_GE(group, 1, platform::errors::InvalidArgument(
                                          "group should be larger than 0."));
S
shippingwang 已提交
66
        });
67 68 69 70
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
S
shippingwang 已提交
71 72 73

    AddComment(R"DOC(
		Shuffle Channel operator
S
shippingwang 已提交
74 75 76
		This opearator shuffles the channels of input x.
		It  divide the input channels in each group into several subgroups,
		and obtain a new order by selecting element from every subgroup one by one.
S
shippingwang 已提交
77 78 79 80 81 82 83 84 85

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.
		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
86
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
87 88 89 90
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
91
    auto input_dims = ctx->GetInputDim(framework::GradVarName("Out"));
92 93 94
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 4,
        platform::errors::InvalidArgument("The layout of input is NCHW."));
S
shippingwang 已提交
95

S
shippingwang 已提交
96 97
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
98 99 100 101

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
102 103 104
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
S
shippingwang 已提交
105
  }
S
shippingwang 已提交
106 107
};

H
hong 已提交
108 109
template <typename T>
class ShuffleChannelGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
110
 public:
H
hong 已提交
111
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
112 113

 protected:
114
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
115
    op->SetType("shuffle_channel_grad");
H
hong 已提交
116 117 118
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
119 120 121
  }
};

S
shippingwang 已提交
122 123 124 125
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
126
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
H
hong 已提交
127 128 129
                  ops::ShuffleChannelOpMaker,
                  ops::ShuffleChannelGradMaker<paddle::framework::OpDesc>,
                  ops::ShuffleChannelGradMaker<paddle::imperative::OpBase>);
S
shippingwang 已提交
130

S
shippingwang 已提交
131
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
132 133

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
134
    shuffle_channel,
S
shippingwang 已提交
135 136 137 138
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
139
    shuffle_channel_grad,
S
shippingwang 已提交
140 141 142
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);