/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/shuffle_channel_op.h" #include #include namespace paddle { namespace operators { class ShuffleChannelOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ShuffleChannelOp"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ShuffleChannelOp"); auto input_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ( input_dims.size(), 4, platform::errors::InvalidArgument("The layout of input is NCHW.")); ctx->SetOutputDim("Out", input_dims); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(ctx, "X"); #ifdef PADDLE_WITH_MKLDNN if (this->CanMKLDNNBeUsed(ctx, input_data_type)) { return framework::OpKernelType(input_data_type, ctx.GetPlace(), framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN); } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } }; class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor, default Tensor), " "the input feature data of ShuffleChannelOp, the layout is NCHW."); AddOutput("Out", "(Tensor, default Tensor), the output of " "ShuffleChannelOp. The layout is NCHW."); AddAttr("group", "the number of groups.") .SetDefault(1) .AddCustomChecker([](const int& group) { PADDLE_ENFORCE_GE(group, 1, platform::errors::InvalidArgument( "group should be larger than 0.")); }); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false) .AsExtra(); AddComment(R"DOC( Shuffle Channel operator This opearator shuffles the channels of input x. It divide the input channels in each group into several subgroups, and obtain a new order by selecting element from every subgroup one by one. Shuffle channel operation makes it possible to build more powerful structures with multiple group convolutional layers. please get more information from the following paper: https://arxiv.org/pdf/1707.01083.pdf )DOC"); } }; class ShuffleChannelGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { auto input_dims = ctx->GetInputDim(framework::GradVarName("Out")); PADDLE_ENFORCE_EQ( input_dims.size(), 4, platform::errors::InvalidArgument("The layout of input is NCHW.")); ctx->SetOutputDim(framework::GradVarName("X"), input_dims); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), ctx.device_context()); } }; template class ShuffleChannelGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("shuffle_channel_grad"); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp, ops::ShuffleChannelOpMaker, ops::ShuffleChannelGradMaker, ops::ShuffleChannelGradMaker); REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp); REGISTER_OP_CPU_KERNEL( shuffle_channel, ops::ShuffleChannelOpKernel, ops::ShuffleChannelOpKernel); REGISTER_OP_CPU_KERNEL( shuffle_channel_grad, ops::ShuffleChannelGradOpKernel, ops::ShuffleChannelGradOpKernel);