shuffle_channel_op.cc 4.8 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
S
shippingwang 已提交
15 16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
24 25
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ShuffleChannelOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ShuffleChannelOp");
S
shippingwang 已提交
26 27

    auto input_dims = ctx->GetInputDim("X");
28 29 30
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 4,
        platform::errors::InvalidArgument("The layout of input is NCHW."));
S
shippingwang 已提交
31 32 33

    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
38 39 40
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
shippingwang 已提交
41
  }
S
shippingwang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
56 57
          PADDLE_ENFORCE_GE(group, 1, platform::errors::InvalidArgument(
                                          "group should be larger than 0."));
S
shippingwang 已提交
58 59 60 61
        });

    AddComment(R"DOC(
		Shuffle Channel operator
S
shippingwang 已提交
62 63 64
		This opearator shuffles the channels of input x.
		It  divide the input channels in each group into several subgroups,
		and obtain a new order by selecting element from every subgroup one by one.
S
shippingwang 已提交
65 66 67 68 69 70 71 72 73

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.
		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
74
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
75 76 77 78
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
79
    auto input_dims = ctx->GetInputDim(framework::GradVarName("Out"));
80 81 82
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 4,
        platform::errors::InvalidArgument("The layout of input is NCHW."));
S
shippingwang 已提交
83

S
shippingwang 已提交
84 85
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
86 87 88 89

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
90 91 92
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
S
shippingwang 已提交
93
  }
S
shippingwang 已提交
94 95
};

H
hong 已提交
96 97
template <typename T>
class ShuffleChannelGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
98
 public:
H
hong 已提交
99
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
100 101

 protected:
102
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
103
    op->SetType("shuffle_channel_grad");
H
hong 已提交
104 105 106
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
107 108 109
  }
};

S
shippingwang 已提交
110 111 112 113
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
114
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
H
hong 已提交
115 116 117
                  ops::ShuffleChannelOpMaker,
                  ops::ShuffleChannelGradMaker<paddle::framework::OpDesc>,
                  ops::ShuffleChannelGradMaker<paddle::imperative::OpBase>);
S
shippingwang 已提交
118

S
shippingwang 已提交
119
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
120 121

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
122
    shuffle_channel,
S
shippingwang 已提交
123 124 125 126
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
127
    shuffle_channel_grad,
S
shippingwang 已提交
128 129 130
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);