signal.py 21.7 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16 17
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
18

19
from .fft import fft_c2c, fft_c2r, fft_r2c
20
from .fluid.data_feeder import check_variable_and_dtype
J
Jiabin Yang 已提交
21
from .fluid.framework import _non_static_mode
22
from .fluid.layer_helper import LayerHelper
23
from .tensor.attribute import is_complex
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

__all__ = [
    'stft',
    'istft',
]


def frame(x, frame_length, hop_length, axis=-1, name=None):
    """
    Slice the N-dimensional (where N >= 1) input into (overlapping) frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 1) Tensor
            with shape `[..., seq_length]` or `[seq_length, ...]`.
        frame_length (int): Length of the frame and `0 < frame_length <= x.shape[axis]`.
        hop_length (int): Number of steps to advance between adjacent frames
40
            and `0 < hop_length`.
41 42
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
43
            specified, the last axis is used by default.
44 45 46 47

    Returns:
        The output frames tensor with shape `[..., frame_length, num_frames]` if `axis==-1`,
            otherwise `[num_frames, frame_length, ...]` where
48

49 50 51 52 53 54 55
            `num_framse = 1 + (x.shape[axis] - frame_length) // hop_length`

    Examples:

    .. code-block:: python

        import paddle
56
        from paddle.signal import frame
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        # 1D
        x = paddle.arange(8)
        y0 = frame(x, frame_length=4, hop_length=2, axis=-1)  # [4, 3]
        # [[0, 2, 4],
        #  [1, 3, 5],
        #  [2, 4, 6],
        #  [3, 5, 7]]

        y1 = frame(x, frame_length=4, hop_length=2, axis=0)   # [3, 4]
        # [[0, 1, 2, 3],
        #  [2, 3, 4, 5],
        #  [4, 5, 6, 7]]

        # 2D
        x0 = paddle.arange(16).reshape([2, 8])
        y0 = frame(x0, frame_length=4, hop_length=2, axis=-1)  # [2, 4, 3]
        # [[[0, 2, 4],
        #   [1, 3, 5],
        #   [2, 4, 6],
        #   [3, 5, 7]],
        #
        #  [[8 , 10, 12],
        #   [9 , 11, 13],
        #   [10, 12, 14],
        #   [11, 13, 15]]]

        x1 = paddle.arange(16).reshape([8, 2])
        y1 = frame(x1, frame_length=4, hop_length=2, axis=0)   # [3, 4, 2]
        # [[[0 , 1 ],
        #   [2 , 3 ],
        #   [4 , 5 ],
        #   [6 , 7 ]],
        #
        #   [4 , 5 ],
        #   [6 , 7 ],
        #   [8 , 9 ],
        #   [10, 11]],
        #
        #   [8 , 9 ],
        #   [10, 11],
        #   [12, 13],
        #   [14, 15]]]

        # > 2D
        x0 = paddle.arange(32).reshape([2, 2, 8])
        y0 = frame(x0, frame_length=4, hop_length=2, axis=-1)  # [2, 2, 4, 3]

        x1 = paddle.arange(32).reshape([8, 2, 2])
        y1 = frame(x1, frame_length=4, hop_length=2, axis=0)   # [3, 4, 2, 2]
    """
    if axis not in [0, -1]:
        raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')

    if not isinstance(frame_length, int) or frame_length <= 0:
        raise ValueError(
            f'Unexpected frame_length: {frame_length}. It should be an positive integer.'
        )

    if not isinstance(hop_length, int) or hop_length <= 0:
        raise ValueError(
            f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
        )

J
Jiabin Yang 已提交
121
    if _non_static_mode():
122 123 124
        if frame_length > x.shape[axis]:
            raise ValueError(
                f'Attribute frame_length should be less equal than sequence length, '
125 126
                f'but got ({frame_length}) > ({x.shape[axis]}).'
            )
127 128 129

    op_type = 'frame'

C
Charles-hit 已提交
130
    if in_dygraph_mode():
131
        return _C_ops.frame(x, frame_length, hop_length, axis)
C
Charles-hit 已提交
132 133

    if _in_legacy_dygraph():
134 135 136 137 138 139 140 141
        attrs = (
            'frame_length',
            frame_length,
            'hop_length',
            hop_length,
            'axis',
            axis,
        )
142
        op = getattr(_legacy_C_ops, op_type)
143 144 145
        out = op(x, *attrs)
    else:
        check_variable_and_dtype(
146 147
            x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], op_type
        )
148 149 150
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype=dtype)
151 152 153 154 155 156 157 158 159 160
        helper.append_op(
            type=op_type,
            inputs={'X': x},
            attrs={
                'frame_length': frame_length,
                'hop_length': hop_length,
                'axis': axis,
            },
            outputs={'Out': out},
        )
161 162 163 164 165 166 167 168 169 170 171 172
    return out


def overlap_add(x, hop_length, axis=-1, name=None):
    """
    Reconstructs a tensor consisted of overlap added sequences from input frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 2) Tensor
            with shape `[..., frame_length, num_frames]` or
            `[num_frames, frame_length ...]`.
        hop_length (int): Number of steps to advance between adjacent frames and
173
            `0 < hop_length <= frame_length`.
174 175
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
176
            specified, the last axis is used by default.
177 178 179 180 181 182 183 184 185 186 187 188

    Returns:
        The output frames tensor with shape `[..., seq_length]` if `axis==-1`,
            otherwise `[seq_length, ...]` where

            `seq_length = (n_frames - 1) * hop_length + frame_length`

    Examples:

    .. code-block:: python

        import paddle
189
        from paddle.signal import overlap_add
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        # 2D
        x0 = paddle.arange(16).reshape([8, 2])
        # [[0 , 1 ],
        #  [2 , 3 ],
        #  [4 , 5 ],
        #  [6 , 7 ],
        #  [8 , 9 ],
        #  [10, 11],
        #  [12, 13],
        #  [14, 15]]
        y0 = overlap_add(x0, hop_length=2, axis=-1)  # [10]
        # [0 , 2 , 5 , 9 , 13, 17, 21, 25, 13, 15]

        x1 = paddle.arange(16).reshape([2, 8])
        # [[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ],
        #  [8 , 9 , 10, 11, 12, 13, 14, 15]]
        y1 = overlap_add(x1, hop_length=2, axis=0)   # [10]
        # [0 , 1 , 10, 12, 14, 16, 18, 20, 14, 15]

        # > 2D
        x0 = paddle.arange(32).reshape([2, 1, 8, 2])
        y0 = overlap_add(x0, hop_length=2, axis=-1)  # [2, 1, 10]

        x1 = paddle.arange(32).reshape([2, 8, 1, 2])
215
        y1 = overlap_add(x1, hop_length=2, axis=0)   # [10, 1, 2]
216 217 218 219 220 221 222 223 224 225 226
    """
    if axis not in [0, -1]:
        raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')

    if not isinstance(hop_length, int) or hop_length <= 0:
        raise ValueError(
            f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
        )

    op_type = 'overlap_add'

227
    if in_dygraph_mode():
228
        out = _C_ops.overlap_add(x, hop_length, axis)
229
    elif paddle.in_dynamic_mode():
230
        attrs = ('hop_length', hop_length, 'axis', axis)
231
        op = getattr(_legacy_C_ops, op_type)
232 233 234
        out = op(x, *attrs)
    else:
        check_variable_and_dtype(
235 236
            x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], op_type
        )
237 238 239
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype=dtype)
240 241 242 243 244 245
        helper.append_op(
            type=op_type,
            inputs={'X': x},
            attrs={'hop_length': hop_length, 'axis': axis},
            outputs={'Out': out},
        )
246 247 248
    return out


249 250 251 252 253 254 255 256 257 258 259 260
def stft(
    x,
    n_fft,
    hop_length=None,
    win_length=None,
    window=None,
    center=True,
    pad_mode='reflect',
    normalized=False,
    onesided=True,
    name=None,
):
261
    r"""
U
ustiniankw 已提交
262

263 264 265 266
    Short-time Fourier transform (STFT).

    The STFT computes the discrete Fourier transforms (DFT) of short overlapping
    windows of the input using this formula:
267

268
    .. math::
269
        X_t[f] = \sum_{n = 0}^{N-1} \text{window}[n]\ x[t \times H + n]\ e^{-{2 \pi j f n}/{N}}
270

271 272
    Where:
    - :math:`t`: The :math:`t`-th input window.
273 274
    - :math:`f`: Frequency :math:`0 \leq f < \text{n_fft}` for `onesided=False`,
    or :math:`0 \leq f < \lfloor \text{n_fft} / 2 \rfloor + 1` for `onesided=True`.
275
    - :math:`N`: Value of `n_fft`.
276 277
    - :math:`H`: Value of `hop_length`.

278 279 280 281 282
    Args:
        x (Tensor): The input data which is a 1-dimensional or 2-dimensional Tensor with
            shape `[..., seq_length]`. It can be a real-valued or a complex Tensor.
        n_fft (int): The number of input samples to perform Fourier transform.
        hop_length (int, optional): Number of steps to advance between adjacent windows
283 284
            and `0 < hop_length`. Default: `None` (treated as equal to `n_fft//4`)
        win_length (int, optional): The size of window. Default: `None` (treated as equal
285 286
            to `n_fft`)
        window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
287
            be center padded to length `n_fft` if `win_length < n_fft`. Default: `None` (
288 289 290 291 292 293 294 295 296 297 298 299
            treated as a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): Whether to pad `x` to make that the
            :math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. See
            `paddle.nn.functional.pad` for all padding options. Default: `"reflect"`
        normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
            Default: `False`
        onesided (bool, optional): Control whether to return half of the Fourier transform
            output that satisfies the conjugate symmetry condition when input is a real-valued
            tensor. It can not be `True` if input is a complex tensor. Default: `True`
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
300

301
    Returns:
U
ustiniankw 已提交
302 303 304
        The complex STFT output tensor with shape `[..., n_fft//2 + 1, num_frames]`
        (real-valued input and `onesided` is `True`) or `[..., n_fft, num_frames]`
        (`onesided` is `False`)
305

306
    Examples:
307
        .. code-block:: python
308

309
            import paddle
310
            from paddle.signal import stft
311

312 313 314 315
            # real-valued input
            x = paddle.randn([8, 48000], dtype=paddle.float64)
            y1 = stft(x, n_fft=512)  # [8, 257, 376]
            y2 = stft(x, n_fft=512, onesided=False)  # [8, 512, 376]
316

317 318 319 320
            # complex input
            x = paddle.randn([8, 48000], dtype=paddle.float64) + \
                    paddle.randn([8, 48000], dtype=paddle.float64)*1j  # [8, 48000] complex128
            y1 = stft(x, n_fft=512, center=False, onesided=False)  # [8, 512, 372]
U
ustiniankw 已提交
321

322
    """
323 324 325
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'stft'
    )
326 327

    x_rank = len(x.shape)
328 329 330 331
    assert x_rank in [
        1,
        2,
    ], f'x should be a 1D or 2D real tensor, but got rank of x is {x_rank}'
332 333 334 335 336 337 338

    if x_rank == 1:  # (batch, seq_length)
        x = x.unsqueeze(0)

    if hop_length is None:
        hop_length = int(n_fft // 4)

339
    assert hop_length > 0, f'hop_length should be > 0, but got {hop_length}.'
340 341 342 343

    if win_length is None:
        win_length = n_fft

J
Jiabin Yang 已提交
344
    if _non_static_mode():
345 346 347
        assert (
            0 < n_fft <= x.shape[-1]
        ), f'n_fft should be in (0, seq_length({x.shape[-1]})], but got {n_fft}.'
348

349 350 351
    assert (
        0 < win_length <= n_fft
    ), f'win_length should be in (0, n_fft({n_fft})], but got {win_length}.'
352 353

    if window is not None:
354 355 356
        assert (
            len(window.shape) == 1 and len(window) == win_length
        ), f'expected a 1D window tensor of size equal to win_length({win_length}), but got window with shape {window.shape}.'
357
    else:
358
        window = paddle.ones(shape=(win_length,), dtype=x.dtype)
359 360 361 362

    if win_length < n_fft:
        pad_left = (n_fft - win_length) // 2
        pad_right = n_fft - win_length - pad_left
363 364 365
        window = paddle.nn.functional.pad(
            window, pad=[pad_left, pad_right], mode='constant'
        )
366 367

    if center:
368 369 370 371 372 373
        assert pad_mode in [
            'constant',
            'reflect',
        ], 'pad_mode should be "reflect" or "constant", but got "{}".'.format(
            pad_mode
        )
374 375 376

        pad_length = n_fft // 2
        # FIXME: Input `x` can be a complex tensor but pad does not supprt complex input.
377 378 379 380 381 382
        x = paddle.nn.functional.pad(
            x.unsqueeze(-1),
            pad=[pad_length, pad_length],
            mode=pad_mode,
            data_format="NLC",
        ).squeeze(-1)
383 384 385

    x_frames = frame(x=x, frame_length=n_fft, hop_length=hop_length, axis=-1)
    x_frames = x_frames.transpose(
386 387
        perm=[0, 2, 1]
    )  # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
388
    x_frames = paddle.multiply(x_frames, window)
389 390 391

    norm = 'ortho' if normalized else 'backward'
    if is_complex(x_frames):
392 393 394
        assert (
            not onesided
        ), 'onesided should be False when input or window is a complex Tensor.'
395 396

    if not is_complex(x):
397 398 399 400 401 402 403 404 405
        out = fft_r2c(
            x=x_frames,
            n=None,
            axis=-1,
            norm=norm,
            forward=True,
            onesided=onesided,
            name=name,
        )
406
    else:
407 408 409
        out = fft_c2c(
            x=x_frames, n=None, axis=-1, norm=norm, forward=True, name=name
        )
410 411 412 413 414 415 416 417 418

    out = out.transpose(perm=[0, 2, 1])  # (batch, n_fft, num_frames)

    if x_rank == 1:
        out.squeeze_(0)

    return out


419 420 421 422 423 424 425 426 427 428 429 430 431
def istft(
    x,
    n_fft,
    hop_length=None,
    win_length=None,
    window=None,
    center=True,
    normalized=False,
    onesided=True,
    length=None,
    return_complex=False,
    name=None,
):
432
    r"""
433 434 435
    Inverse short-time Fourier transform (ISTFT).

    Reconstruct time-domain signal from the giving complex input and window tensor when
436
    nonzero overlap-add (NOLA) condition is met:
437 438

    .. math::
439
        \sum_{t = -\infty}^{\infty} \text{window}^2[n - t \times H]\ \neq \ 0, \ \text{for } all \ n
440 441 442 443 444 445

    Where:
    - :math:`t`: The :math:`t`-th input window.
    - :math:`N`: Value of `n_fft`.
    - :math:`H`: Value of `hop_length`.

446
        Result of `istft` expected to be the inverse of `paddle.signal.stft`, but it is
447 448
        not guaranteed to reconstruct a exactly realizible time-domain signal from a STFT
        complex tensor which has been modified (via masking or otherwise). Therefore, `istft`
449
        gives the `[Griffin-Lim optimal estimate] <https://ieeexplore.ieee.org/document/1164317>`_
450 451 452 453
        (optimal in a least-squares sense) for the corresponding signal.

    Args:
        x (Tensor): The input data which is a 2-dimensional or 3-dimensional **complesx**
454
            Tensor with shape `[..., n_fft, num_frames]`.
455 456
        n_fft (int): The size of Fourier transform.
        hop_length (int, optional): Number of steps to advance between adjacent windows
457
            from time-domain signal and `0 < hop_length < win_length`. Default: `None` (
458
            treated as equal to `n_fft//4`)
459
        win_length (int, optional): The size of window. Default: `None` (treated as equal
460 461 462 463 464 465 466
            to `n_fft`)
        window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. It should be a
            real-valued tensor if `return_complex` is False. Default: `None`(treated as
            a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): It means that whether the time-domain signal has been
            center padded. Default: `True`.
467
        normalized (bool, optional): Control whether to scale the output by :math:`1/sqrt(n_{fft})`.
468 469 470 471 472 473
            Default: `False`
        onesided (bool, optional): It means that whether the input STFT tensor is a half
            of the conjugate symmetry STFT tensor transformed from a real-valued signal
            and `istft` will return a real-valued tensor when it is set to `True`.
            Default: `True`.
        length (int, optional): Specify the length of time-domain signal. Default: `None`(
474
            treated as the whole length of signal).
475 476
        return_complex (bool, optional): It means that whether the time-domain signal is
            real-valued. If `return_complex` is set to `True`, `onesided` should be set to
477
            `False` cause the output is complex.
478 479 480 481 482
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor of least squares estimation of the reconstructed signal(s) with shape
483
        `[..., seq_length]`
484

485
    Examples:
486 487 488 489
        .. code-block:: python

            import numpy as np
            import paddle
490
            from paddle.signal import stft, istft
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

            paddle.seed(0)

            # STFT
            x = paddle.randn([8, 48000], dtype=paddle.float64)
            y = stft(x, n_fft=512)  # [8, 257, 376]

            # ISTFT
            x_ = istft(y, n_fft=512)  # [8, 48000]

            np.allclose(x, x_)  # True
    """
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'istft')

    x_rank = len(x.shape)
506 507 508 509 510 511
    assert x_rank in [
        2,
        3,
    ], 'x should be a 2D or 3D complex tensor, but got rank of x is {}'.format(
        x_rank
    )
512 513 514 515 516 517 518 519 520 521 522

    if x_rank == 2:  # (batch, n_fft, n_frames)
        x = x.unsqueeze(0)

    if hop_length is None:
        hop_length = int(n_fft // 4)

    if win_length is None:
        win_length = n_fft

    # Assure no gaps between frames.
523 524 525 526 527 528 529 530 531 532 533
    assert (
        0 < hop_length <= win_length
    ), 'hop_length should be in (0, win_length({})], but got {}.'.format(
        win_length, hop_length
    )

    assert (
        0 < win_length <= n_fft
    ), 'win_length should be in (0, n_fft({})], but got {}.'.format(
        n_fft, win_length
    )
534 535 536 537

    n_frames = x.shape[-1]
    fft_size = x.shape[-2]

J
Jiabin Yang 已提交
538
    if _non_static_mode():
539
        if onesided:
540 541 542 543 544
            assert (
                fft_size == n_fft // 2 + 1
            ), 'fft_size should be equal to n_fft // 2 + 1({}) when onesided is True, but got {}.'.format(
                n_fft // 2 + 1, fft_size
            )
545
        else:
546 547 548 549 550
            assert (
                fft_size == n_fft
            ), 'fft_size should be equal to n_fft({}) when onesided is False, but got {}.'.format(
                n_fft, fft_size
            )
551 552

    if window is not None:
553 554 555 556 557
        assert (
            len(window.shape) == 1 and len(window) == win_length
        ), 'expected a 1D window tensor of size equal to win_length({}), but got window with shape {}.'.format(
            win_length, window.shape
        )
558
    else:
559 560 561 562 563 564
        window_dtype = (
            paddle.float32
            if x.dtype in [paddle.float32, paddle.complex64]
            else paddle.float64
        )
        window = paddle.ones(shape=(win_length,), dtype=window_dtype)
565 566 567 568 569

    if win_length < n_fft:
        pad_left = (n_fft - win_length) // 2
        pad_right = n_fft - win_length - pad_left
        # FIXME: Input `window` can be a complex tensor but pad does not supprt complex input.
570 571 572
        window = paddle.nn.functional.pad(
            window, pad=[pad_left, pad_right], mode='constant'
        )
573 574

    x = x.transpose(
575 576
        perm=[0, 2, 1]
    )  # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
577 578 579
    norm = 'ortho' if normalized else 'backward'

    if return_complex:
580 581 582
        assert (
            not onesided
        ), 'onesided should be False when input(output of istft) or window is a complex Tensor.'
583 584 585

        out = fft_c2c(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)
    else:
586 587 588
        assert not is_complex(
            window
        ), 'Data type of window should not be complex when return_complex is False.'
589 590

        if onesided is False:
591
            x = x[:, :, : n_fft // 2 + 1]
592 593
        out = fft_c2r(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)

594
    out = paddle.multiply(out, window).transpose(
595 596 597 598 599
        perm=[0, 2, 1]
    )  # (batch, n_fft, num_frames)
    out = overlap_add(
        x=out, hop_length=hop_length, axis=-1
    )  # (batch, seq_length)
600 601 602

    window_envelop = overlap_add(
        x=paddle.tile(
603
            x=paddle.multiply(window, window).unsqueeze(0),
604 605 606 607
            repeat_times=[n_frames, 1],
        ).transpose(
            perm=[1, 0]
        ),  # (n_fft, num_frames)
608
        hop_length=hop_length,
609 610
        axis=-1,
    )  # (seq_length, )
611 612 613

    if length is None:
        if center:
614 615
            out = out[:, (n_fft // 2) : -(n_fft // 2)]
            window_envelop = window_envelop[(n_fft // 2) : -(n_fft // 2)]
616 617 618 619 620 621
    else:
        if center:
            start = n_fft // 2
        else:
            start = 0

622 623
        out = out[:, start : start + length]
        window_envelop = window_envelop[start : start + length]
624 625

    # Check whether the Nonzero Overlap Add (NOLA) constraint is met.
J
Jiabin Yang 已提交
626
    if _non_static_mode() and window_envelop.abs().min().item() < 1e-11:
627 628 629 630 631 632 633 634 635 636
        raise ValueError(
            'Abort istft because Nonzero Overlap Add (NOLA) condition failed. For more information about NOLA constraint please see `scipy.signal.check_NOLA`(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html).'
        )

    out = out / window_envelop

    if x_rank == 2:
        out.squeeze_(0)

    return out