signal.py 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import paddle

19
from .tensor.attribute import is_complex, is_floating_point
20
from .fft import fft_r2c, fft_c2r, fft_c2c
21 22 23 24
from .fluid.data_feeder import check_variable_and_dtype
from .fluid.framework import in_dygraph_mode
from .fluid.layer_helper import LayerHelper
from . import _C_ops
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

__all__ = [
    'stft',
    'istft',
]


def frame(x, frame_length, hop_length, axis=-1, name=None):
    """
    Slice the N-dimensional (where N >= 1) input into (overlapping) frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 1) Tensor
            with shape `[..., seq_length]` or `[seq_length, ...]`.
        frame_length (int): Length of the frame and `0 < frame_length <= x.shape[axis]`.
        hop_length (int): Number of steps to advance between adjacent frames
            and `0 < hop_length`. 
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
            specified, the last axis is used by default. 

    Returns:
        The output frames tensor with shape `[..., frame_length, num_frames]` if `axis==-1`,
            otherwise `[num_frames, frame_length, ...]` where
        
            `num_framse = 1 + (x.shape[axis] - frame_length) // hop_length`

    Examples:

    .. code-block:: python

        import paddle
57
        from paddle.signal import frame
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        
        # 1D
        x = paddle.arange(8)
        y0 = frame(x, frame_length=4, hop_length=2, axis=-1)  # [4, 3]
        # [[0, 2, 4],
        #  [1, 3, 5],
        #  [2, 4, 6],
        #  [3, 5, 7]]

        y1 = frame(x, frame_length=4, hop_length=2, axis=0)   # [3, 4]
        # [[0, 1, 2, 3],
        #  [2, 3, 4, 5],
        #  [4, 5, 6, 7]]

        # 2D
        x0 = paddle.arange(16).reshape([2, 8])
        y0 = frame(x0, frame_length=4, hop_length=2, axis=-1)  # [2, 4, 3]
        # [[[0, 2, 4],
        #   [1, 3, 5],
        #   [2, 4, 6],
        #   [3, 5, 7]],
        #
        #  [[8 , 10, 12],
        #   [9 , 11, 13],
        #   [10, 12, 14],
        #   [11, 13, 15]]]

        x1 = paddle.arange(16).reshape([8, 2])
        y1 = frame(x1, frame_length=4, hop_length=2, axis=0)   # [3, 4, 2]
        # [[[0 , 1 ],
        #   [2 , 3 ],
        #   [4 , 5 ],
        #   [6 , 7 ]],
        #
        #   [4 , 5 ],
        #   [6 , 7 ],
        #   [8 , 9 ],
        #   [10, 11]],
        #
        #   [8 , 9 ],
        #   [10, 11],
        #   [12, 13],
        #   [14, 15]]]

        # > 2D
        x0 = paddle.arange(32).reshape([2, 2, 8])
        y0 = frame(x0, frame_length=4, hop_length=2, axis=-1)  # [2, 2, 4, 3]

        x1 = paddle.arange(32).reshape([8, 2, 2])
        y1 = frame(x1, frame_length=4, hop_length=2, axis=0)   # [3, 4, 2, 2]
    """
    if axis not in [0, -1]:
        raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')

    if not isinstance(frame_length, int) or frame_length <= 0:
        raise ValueError(
            f'Unexpected frame_length: {frame_length}. It should be an positive integer.'
        )

    if not isinstance(hop_length, int) or hop_length <= 0:
        raise ValueError(
            f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
        )

122 123 124 125 126
    if in_dygraph_mode():
        if frame_length > x.shape[axis]:
            raise ValueError(
                f'Attribute frame_length should be less equal than sequence length, '
                f'but got ({frame_length}) > ({x.shape[axis]}).')
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    op_type = 'frame'

    if in_dygraph_mode():
        attrs = ('frame_length', frame_length, 'hop_length', hop_length, 'axis',
                 axis)
        op = getattr(_C_ops, op_type)
        out = op(x, *attrs)
    else:
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float16', 'float32',
                     'float64'], op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type=op_type,
            inputs={'X': x},
            attrs={
                'frame_length': frame_length,
                'hop_length': hop_length,
                'axis': axis
            },
            outputs={'Out': out})
    return out


def overlap_add(x, hop_length, axis=-1, name=None):
    """
    Reconstructs a tensor consisted of overlap added sequences from input frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 2) Tensor
            with shape `[..., frame_length, num_frames]` or
            `[num_frames, frame_length ...]`.
        hop_length (int): Number of steps to advance between adjacent frames and
            `0 < hop_length <= frame_length`. 
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
            specified, the last axis is used by default. 

    Returns:
        The output frames tensor with shape `[..., seq_length]` if `axis==-1`,
            otherwise `[seq_length, ...]` where

            `seq_length = (n_frames - 1) * hop_length + frame_length`

    Examples:

    .. code-block:: python

        import paddle
179
        from paddle.signal import overlap_add
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        
        # 2D
        x0 = paddle.arange(16).reshape([8, 2])
        # [[0 , 1 ],
        #  [2 , 3 ],
        #  [4 , 5 ],
        #  [6 , 7 ],
        #  [8 , 9 ],
        #  [10, 11],
        #  [12, 13],
        #  [14, 15]]
        y0 = overlap_add(x0, hop_length=2, axis=-1)  # [10]
        # [0 , 2 , 5 , 9 , 13, 17, 21, 25, 13, 15]

        x1 = paddle.arange(16).reshape([2, 8])
        # [[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ],
        #  [8 , 9 , 10, 11, 12, 13, 14, 15]]
        y1 = overlap_add(x1, hop_length=2, axis=0)   # [10]
        # [0 , 1 , 10, 12, 14, 16, 18, 20, 14, 15]

        # > 2D
        x0 = paddle.arange(32).reshape([2, 1, 8, 2])
        y0 = overlap_add(x0, hop_length=2, axis=-1)  # [2, 1, 10]

        x1 = paddle.arange(32).reshape([2, 8, 1, 2])
        y1 = overlap_add(x1, hop_length=2, axis=0)   # [10, 1, 2] 
    """
    if axis not in [0, -1]:
        raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')

    if not isinstance(hop_length, int) or hop_length <= 0:
        raise ValueError(
            f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
        )

    op_type = 'overlap_add'

    if in_dygraph_mode():
        attrs = ('hop_length', hop_length, 'axis', axis)
        op = getattr(_C_ops, op_type)
        out = op(x, *attrs)
    else:
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float16', 'float32',
                     'float64'], op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type=op_type,
            inputs={'X': x},
            attrs={'hop_length': hop_length,
                   'axis': axis},
            outputs={'Out': out})
    return out


def stft(x,
         n_fft,
         hop_length=None,
         win_length=None,
         window=None,
         center=True,
         pad_mode='reflect',
         normalized=False,
         onesided=True,
         name=None):
247
    r"""
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    Short-time Fourier transform (STFT).

    The STFT computes the discrete Fourier transforms (DFT) of short overlapping
    windows of the input using this formula:
    
    .. math::
        X_t[\omega] = \sum_{n = 0}^{N-1}%
                      \text{window}[n]\ x[t \times H + n]\ %
                      e^{-{2 \pi j \omega n}/{N}}
    
    Where:
    - :math:`t`: The :math:`t`-th input window.
    - :math:`\omega`: Frequency :math:`0 \leq \omega < \text{n\_fft}` for `onesided=False`,
        or :math:`0 \leq \omega < \lfloor \text{n\_fft} / 2 \rfloor + 1` for `onesided=True`. 
    - :math:`N`: Value of `n_fft`.
    - :math:`H`: Value of `hop_length`.  
    
    Args:
        x (Tensor): The input data which is a 1-dimensional or 2-dimensional Tensor with
            shape `[..., seq_length]`. It can be a real-valued or a complex Tensor.
        n_fft (int): The number of input samples to perform Fourier transform.
        hop_length (int, optional): Number of steps to advance between adjacent windows
            and `0 < hop_length`. Default: `None`(treated as equal to `n_fft//4`)
        win_length (int, optional): The size of window. Default: `None`(treated as equal
            to `n_fft`)
        window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. Default: `None`(
            treated as a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): Whether to pad `x` to make that the
            :math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. See
            `paddle.nn.functional.pad` for all padding options. Default: `"reflect"`
        normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
            Default: `False`
        onesided (bool, optional): Control whether to return half of the Fourier transform
            output that satisfies the conjugate symmetry condition when input is a real-valued
            tensor. It can not be `True` if input is a complex tensor. Default: `True`
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        The complex STFT output tensor with shape `[..., n_fft//2 + 1, num_frames]`(
            real-valued input and `onesided` is `True`) or `[..., n_fft, num_frames]`(
            `onesided` is `False`)
    
293
    Examples:
294 295 296
        .. code-block:: python
    
            import paddle
297
            from paddle.signal import stft
298 299 300 301 302 303 304 305 306 307 308 309
    
            # real-valued input
            x = paddle.randn([8, 48000], dtype=paddle.float64)
            y1 = stft(x, n_fft=512)  # [8, 257, 376]
            y2 = stft(x, n_fft=512, onesided=False)  # [8, 512, 376]
    
            # complex input
            x = paddle.randn([8, 48000], dtype=paddle.float64) + \
                    paddle.randn([8, 48000], dtype=paddle.float64)*1j  # [8, 48000] complex128
            y1 = stft(x, n_fft=512, center=False, onesided=False)  # [8, 512, 372]
    """
    check_variable_and_dtype(
310
        x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'stft')
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

    x_rank = len(x.shape)
    assert x_rank in [1, 2], \
        f'x should be a 1D or 2D real tensor, but got rank of x is {x_rank}'

    if x_rank == 1:  # (batch, seq_length)
        x = x.unsqueeze(0)

    if hop_length is None:
        hop_length = int(n_fft // 4)

    assert hop_length > 0, \
        f'hop_length should be > 0, but got {hop_length}.'

    if win_length is None:
        win_length = n_fft

328 329 330
    if in_dygraph_mode():
        assert 0 < n_fft <= x.shape[-1], \
            f'n_fft should be in (0, seq_length({x.shape[-1]})], but got {n_fft}.'
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

    assert 0 < win_length <= n_fft, \
        f'win_length should be in (0, n_fft({n_fft})], but got {win_length}.'

    if window is not None:
        assert len(window.shape) == 1 and len(window) == win_length, \
            f'expected a 1D window tensor of size equal to win_length({win_length}), but got window with shape {window.shape}.'
    else:
        window = paddle.ones(shape=(win_length, ), dtype=x.dtype)

    if win_length < n_fft:
        pad_left = (n_fft - win_length) // 2
        pad_right = n_fft - win_length - pad_left
        window = paddle.nn.functional.pad(window,
                                          pad=[pad_left, pad_right],
                                          mode='constant')

    if center:
        assert pad_mode in ['constant', 'reflect'], \
            'pad_mode should be "reflect" or "constant", but got "{}".'.format(pad_mode)

        pad_length = n_fft // 2
        # FIXME: Input `x` can be a complex tensor but pad does not supprt complex input.
        x = paddle.nn.functional.pad(x.unsqueeze(-1),
                                     pad=[pad_length, pad_length],
                                     mode=pad_mode,
                                     data_format="NLC").squeeze(-1)

    x_frames = frame(x=x, frame_length=n_fft, hop_length=hop_length, axis=-1)
    x_frames = x_frames.transpose(
        perm=[0, 2,
              1])  # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
363
    x_frames = paddle.multiply(x_frames, window)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

    norm = 'ortho' if normalized else 'backward'
    if is_complex(x_frames):
        assert not onesided, \
            'onesided should be False when input or window is a complex Tensor.'

    if not is_complex(x):
        out = fft_r2c(
            x=x_frames,
            n=None,
            axis=-1,
            norm=norm,
            forward=True,
            onesided=onesided,
            name=name)
    else:
        out = fft_c2c(
            x=x_frames, n=None, axis=-1, norm=norm, forward=True, name=name)

    out = out.transpose(perm=[0, 2, 1])  # (batch, n_fft, num_frames)

    if x_rank == 1:
        out.squeeze_(0)

    return out


def istft(x,
          n_fft,
          hop_length=None,
          win_length=None,
          window=None,
          center=True,
          normalized=False,
          onesided=True,
          length=None,
          return_complex=False,
          name=None):
402
    r"""
403 404 405 406 407 408 409 410 411 412 413 414 415 416
    Inverse short-time Fourier transform (ISTFT).

    Reconstruct time-domain signal from the giving complex input and window tensor when
        nonzero overlap-add (NOLA) condition is met: 

    .. math::
        \sum_{t = -\infty}^{\infty}%
            \text{window}^2[n - t \times H]\ \neq \ 0, \ \text{for } all \ n

    Where:
    - :math:`t`: The :math:`t`-th input window.
    - :math:`N`: Value of `n_fft`.
    - :math:`H`: Value of `hop_length`.

417
    Result of `istft` expected to be the inverse of `paddle.signal.stft`, but it is
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        not guaranteed to reconstruct a exactly realizible time-domain signal from a STFT
        complex tensor which has been modified (via masking or otherwise). Therefore, `istft`
        gives the [Griffin-Lim optimal estimate](https://ieeexplore.ieee.org/document/1164317)
        (optimal in a least-squares sense) for the corresponding signal.

    Args:
        x (Tensor): The input data which is a 2-dimensional or 3-dimensional **complesx**
            Tensor with shape `[..., n_fft, num_frames]`. 
        n_fft (int): The size of Fourier transform.
        hop_length (int, optional): Number of steps to advance between adjacent windows
            from time-domain signal and `0 < hop_length < win_length`. Default: `None`(
            treated as equal to `n_fft//4`)
        win_length (int, optional): The size of window. Default: `None`(treated as equal
            to `n_fft`)
        window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. It should be a
            real-valued tensor if `return_complex` is False. Default: `None`(treated as
            a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): It means that whether the time-domain signal has been
            center padded. Default: `True`.
        normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
            Default: `False`
        onesided (bool, optional): It means that whether the input STFT tensor is a half
            of the conjugate symmetry STFT tensor transformed from a real-valued signal
            and `istft` will return a real-valued tensor when it is set to `True`.
            Default: `True`.
        length (int, optional): Specify the length of time-domain signal. Default: `None`(
            treated as the whole length of signal). 
        return_complex (bool, optional): It means that whether the time-domain signal is
            real-valued. If `return_complex` is set to `True`, `onesided` should be set to
            `False` cause the output is complex. 
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor of least squares estimation of the reconstructed signal(s) with shape
            `[..., seq_length]`

456
    Examples:
457 458 459 460
        .. code-block:: python

            import numpy as np
            import paddle
461
            from paddle.signal import stft, istft
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

            paddle.seed(0)

            # STFT
            x = paddle.randn([8, 48000], dtype=paddle.float64)
            y = stft(x, n_fft=512)  # [8, 257, 376]

            # ISTFT
            x_ = istft(y, n_fft=512)  # [8, 48000]

            np.allclose(x, x_)  # True
    """
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'istft')

    x_rank = len(x.shape)
    assert x_rank in [2, 3], \
        'x should be a 2D or 3D complex tensor, but got rank of x is {}'.format(x_rank)

    if x_rank == 2:  # (batch, n_fft, n_frames)
        x = x.unsqueeze(0)

    if hop_length is None:
        hop_length = int(n_fft // 4)

    if win_length is None:
        win_length = n_fft

    # Assure no gaps between frames.
    assert 0 < hop_length <= win_length, \
        'hop_length should be in (0, win_length({})], but got {}.'.format(win_length, hop_length)

    assert 0 < win_length <= n_fft, \
        'win_length should be in (0, n_fft({})], but got {}.'.format(n_fft, win_length)

    n_frames = x.shape[-1]
    fft_size = x.shape[-2]

499 500 501 502 503 504 505
    if in_dygraph_mode():
        if onesided:
            assert (fft_size == n_fft // 2 + 1), \
                'fft_size should be equal to n_fft // 2 + 1({}) when onesided is True, but got {}.'.format(n_fft // 2 + 1, fft_size)
        else:
            assert (fft_size == n_fft), \
                'fft_size should be equal to n_fft({}) when onesided is False, but got {}.'.format(n_fft, fft_size)
506 507 508 509 510

    if window is not None:
        assert len(window.shape) == 1 and len(window) == win_length, \
            'expected a 1D window tensor of size equal to win_length({}), but got window with shape {}.'.format(win_length, window.shape)
    else:
511 512 513 514
        window_dtype = paddle.float32 if x.dtype in [
            paddle.float32, paddle.complex64
        ] else paddle.float64
        window = paddle.ones(shape=(win_length, ), dtype=window_dtype)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

    if win_length < n_fft:
        pad_left = (n_fft - win_length) // 2
        pad_right = n_fft - win_length - pad_left
        # FIXME: Input `window` can be a complex tensor but pad does not supprt complex input.
        window = paddle.nn.functional.pad(window,
                                          pad=[pad_left, pad_right],
                                          mode='constant')

    x = x.transpose(
        perm=[0, 2,
              1])  # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
    norm = 'ortho' if normalized else 'backward'

    if return_complex:
        assert not onesided, \
            'onesided should be False when input(output of istft) or window is a complex Tensor.'

        out = fft_c2c(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)
    else:
        assert not is_complex(window), \
            'Data type of window should not be complex when return_complex is False.'

        if onesided is False:
            x = x[:, :, :n_fft // 2 + 1]
        out = fft_c2r(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)

542 543
    out = paddle.multiply(out, window).transpose(
        perm=[0, 2, 1])  # (batch, n_fft, num_frames)
544
    out = overlap_add(
545
        x=out, hop_length=hop_length, axis=-1)  # (batch, seq_length)
546 547 548

    window_envelop = overlap_add(
        x=paddle.tile(
549 550
            x=paddle.multiply(window, window).unsqueeze(0),
            repeat_times=[n_frames, 1]).transpose(
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
                perm=[1, 0]),  # (n_fft, num_frames)
        hop_length=hop_length,
        axis=-1)  # (seq_length, )

    if length is None:
        if center:
            out = out[:, (n_fft // 2):-(n_fft // 2)]
            window_envelop = window_envelop[(n_fft // 2):-(n_fft // 2)]
    else:
        if center:
            start = n_fft // 2
        else:
            start = 0

        out = out[:, start:start + length]
        window_envelop = window_envelop[start:start + length]

    # Check whether the Nonzero Overlap Add (NOLA) constraint is met.
569
    if in_dygraph_mode() and window_envelop.abs().min().item() < 1e-11:
570 571 572 573 574 575 576 577 578 579
        raise ValueError(
            'Abort istft because Nonzero Overlap Add (NOLA) condition failed. For more information about NOLA constraint please see `scipy.signal.check_NOLA`(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html).'
        )

    out = out / window_envelop

    if x_rank == 2:
        out.squeeze_(0)

    return out