Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2a8219c1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2a8219c1
编写于
8月 01, 2022
作者:
L
levi131
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate overlap_add and overlap_add_grad op (#44739)
* update code format * add ymal and test * update for comments
上级
1d79f1f7
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
926 addition
and
491 deletion
+926
-491
paddle/fluid/operators/overlap_add_op.cc
paddle/fluid/operators/overlap_add_op.cc
+18
-121
paddle/fluid/operators/overlap_add_op.cu
paddle/fluid/operators/overlap_add_op.cu
+0
-43
paddle/fluid/operators/overlap_add_op.h
paddle/fluid/operators/overlap_add_op.h
+0
-322
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+10
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+12
-2
paddle/phi/infermeta/backward.cc
paddle/phi/infermeta/backward.cc
+12
-0
paddle/phi/infermeta/backward.h
paddle/phi/infermeta/backward.h
+6
-0
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+84
-0
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+7
-0
paddle/phi/kernels/cpu/overlap_add_grad_kernel.cc
paddle/phi/kernels/cpu/overlap_add_grad_kernel.cc
+164
-0
paddle/phi/kernels/cpu/overlap_add_kernel.cc
paddle/phi/kernels/cpu/overlap_add_kernel.cc
+150
-0
paddle/phi/kernels/funcs/overlap_add_functor.h
paddle/phi/kernels/funcs/overlap_add_functor.h
+58
-0
paddle/phi/kernels/gpu/overlap_add_grad_kernel.cu
paddle/phi/kernels/gpu/overlap_add_grad_kernel.cu
+165
-0
paddle/phi/kernels/gpu/overlap_add_kernel.cu
paddle/phi/kernels/gpu/overlap_add_kernel.cu
+151
-0
paddle/phi/kernels/overlap_add_grad_kernel.h
paddle/phi/kernels/overlap_add_grad_kernel.h
+27
-0
paddle/phi/kernels/overlap_add_kernel.h
paddle/phi/kernels/overlap_add_kernel.h
+26
-0
paddle/phi/ops/compat/overlap_add_sig.cc
paddle/phi/ops/compat/overlap_add_sig.cc
+30
-0
python/paddle/fluid/tests/unittests/test_overlap_add_op.py
python/paddle/fluid/tests/unittests/test_overlap_add_op.py
+3
-2
python/paddle/signal.py
python/paddle/signal.py
+3
-1
未找到文件。
paddle/fluid/operators/overlap_add_op.cc
浏览文件 @
2a8219c1
...
...
@@ -12,7 +12,11 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/overlap_add_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -21,93 +25,6 @@ class OverlapAddOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"overlap_add"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"overlap_add"
);
const
int
hop_length
=
ctx
->
Attrs
().
Get
<
int
>
(
"hop_length"
);
const
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_rank
,
2
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of OverlapAddOp should be a tensor which contains "
"at least 2 dimensions, but got rank %s."
,
x_rank
));
PADDLE_ENFORCE_GT
(
hop_length
,
0
,
platform
::
errors
::
InvalidArgument
(
"Attribute(hop_length) of OverlapAddOp should be greater "
"than 0, but got %s."
,
hop_length
));
PADDLE_ENFORCE_EQ
(
(
axis
==
0
||
axis
==
-
1
),
true
,
platform
::
errors
::
InvalidArgument
(
"Attribute(axis) of OverlapAddOp should 0 or -1, but got %s."
,
axis
));
std
::
vector
<
int64_t
>
output_shape
;
int
n_frames
;
int
frame_length
;
int
seq_length
;
int
start_axis
;
int
end_axis
;
if
(
axis
==
0
)
{
n_frames
=
x_dims
[
0
];
frame_length
=
x_dims
[
1
];
start_axis
=
2
;
end_axis
=
x_rank
-
1
;
}
else
{
n_frames
=
x_dims
[
x_rank
-
1
];
frame_length
=
x_dims
[
x_rank
-
2
];
start_axis
=
0
;
end_axis
=
x_rank
-
3
;
}
bool
contain_unknown_dim
=
phi
::
contain_unknown_dim
(
x_dims
);
bool
check
=
ctx
->
IsRuntime
()
||
!
contain_unknown_dim
;
if
(
check
)
{
PADDLE_ENFORCE_LE
(
hop_length
,
frame_length
,
platform
::
errors
::
InvalidArgument
(
"Attribute(hop_length) of OverlapAddOp should be less or equal "
"than frame_length, but got hop_length(%s) > frame_length(%s)."
,
hop_length
,
frame_length
));
}
if
(
n_frames
==
-
1
)
{
seq_length
=
-
1
;
}
else
{
seq_length
=
(
n_frames
-
1
)
*
hop_length
+
frame_length
;
}
// It won't go into for loop when x_rank == 2U.
for
(
int
i
=
start_axis
;
i
<=
end_axis
;
i
++
)
{
output_shape
.
push_back
(
x_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (seq_length, ...)
output_shape
.
insert
(
output_shape
.
begin
(),
seq_length
);
}
else
{
// (..., seq_length)
output_shape
.
push_back
(
seq_length
);
}
ctx
->
SetOutputDim
(
"Out"
,
phi
::
make_ddim
(
output_shape
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -137,17 +54,6 @@ class OverlapAddOpMaker : public framework::OpProtoAndCheckerMaker {
class
OverlapAddOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"overlap_add_grad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@GRAD"
,
"overlap_add_grad"
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
...
...
@@ -176,30 +82,21 @@ class OverlapAddOpGradMaker : public framework::SingleGradOpMaker<T> {
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
overlap_add
,
OverlapAddInferShapeFunctor
,
PD_INFER_META
(
phi
::
OverlapAddInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
overlap_add_grad
,
OverlapAddGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
OverlapAddGradInferMeta
));
REGISTER_OPERATOR
(
overlap_add
,
ops
::
OverlapAddOp
,
ops
::
OverlapAddOpMaker
,
ops
::
OverlapAddOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
OverlapAddOpGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
overlap_add_grad
,
ops
::
OverlapAddOpGrad
);
REGISTER_OP_CPU_KERNEL
(
overlap_add
,
ops
::
OverlapAddKernel
<
phi
::
CPUContext
,
int
>
,
ops
::
OverlapAddKernel
<
phi
::
CPUContext
,
int64_t
>
,
ops
::
OverlapAddKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
OverlapAddKernel
<
phi
::
CPUContext
,
double
>
,
ops
::
OverlapAddKernel
<
phi
::
CPUContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
OverlapAddKernel
<
phi
::
CPUContext
,
paddle
::
platform
::
complex
<
double
>>
);
ops
::
OverlapAddOpGradMaker
<
paddle
::
imperative
::
OpBase
>
,
OverlapAddInferShapeFunctor
);
REGISTER_OP_CPU_KERNEL
(
overlap_add_grad
,
ops
::
OverlapAddGradKernel
<
phi
::
CPUContext
,
int
>
,
ops
::
OverlapAddGradKernel
<
phi
::
CPUContext
,
int64_t
>
,
ops
::
OverlapAddGradKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
OverlapAddGradKernel
<
phi
::
CPUContext
,
double
>
,
ops
::
OverlapAddGradKernel
<
phi
::
CPUContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
OverlapAddGradKernel
<
phi
::
CPUContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OPERATOR
(
overlap_add_grad
,
ops
::
OverlapAddOpGrad
,
OverlapAddGradInferShapeFunctor
);
paddle/fluid/operators/overlap_add_op.cu
已删除
100644 → 0
浏览文件 @
1d79f1f7
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/overlap_add_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
overlap_add
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
OverlapAddKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
overlap_add_grad
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
OverlapAddGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
paddle/fluid/operators/overlap_add_op.h
已删除
100644 → 0
浏览文件 @
1d79f1f7
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/seq2col.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
struct
OverlapAddFunctor
{
void
operator
()(
const
DeviceContext
&
dev_ctx
,
const
Tensor
*
input
,
Tensor
*
output
,
size_t
seq_length
,
size_t
frame_length
,
size_t
n_frames
,
size_t
hop_length
,
bool
is_grad
=
false
)
const
{
auto
numel
=
output
->
numel
();
const
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
output_data
=
output
->
data
<
T
>
();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
if
(
!
is_grad
)
{
phi
::
funcs
::
Col2SeqFunctor
<
T
>
functor
(
input_data
,
output_data
,
seq_length
,
frame_length
,
n_frames
,
hop_length
);
for_range
(
functor
);
}
else
{
phi
::
funcs
::
Seq2ColFunctor
<
T
>
functor
(
input_data
,
output_data
,
seq_length
,
frame_length
,
n_frames
,
hop_length
);
for_range
(
functor
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
OverlapAddKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
size_t
x_rank
=
x
->
dims
().
size
();
const
size_t
out_rank
=
out
->
dims
().
size
();
const
int
hop_length
=
ctx
.
Attr
<
int
>
(
"hop_length"
);
const
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
int
n_frames
=
(
axis
==
0
)
?
x
->
dims
()[
0
]
:
x
->
dims
()[
x_rank
-
1
];
const
int
frame_length
=
(
axis
==
0
)
?
x
->
dims
()[
1
]
:
x
->
dims
()[
x_rank
-
2
];
const
int
seq_length
=
(
axis
==
0
)
?
out
->
dims
()[
0
]
:
out
->
dims
()[
out_rank
-
1
];
auto
&
dev_ctx
=
ctx
.
device_context
<
DeviceContext
>
();
Tensor
x_
(
x
->
type
());
x_
=
*
x
;
framework
::
DDim
preserved_dims
;
if
(
out_rank
>
2
)
{
// Save dims used to flatten both input and output tensors and restore
// output tensor.
framework
::
DDim
x_resized_dims
;
framework
::
DDim
out_resized_dims
;
if
(
axis
==
0
)
{
preserved_dims
=
phi
::
slice_ddim
(
out
->
dims
(),
1
,
out_rank
);
x_resized_dims
=
{
n_frames
,
frame_length
,
phi
::
product
(
preserved_dims
)};
out_resized_dims
=
{
seq_length
,
phi
::
product
(
preserved_dims
)};
}
else
{
preserved_dims
=
phi
::
slice_ddim
(
out
->
dims
(),
0
,
out_rank
-
1
);
x_resized_dims
=
{
phi
::
product
(
preserved_dims
),
frame_length
,
n_frames
};
out_resized_dims
=
{
phi
::
product
(
preserved_dims
),
seq_length
};
}
x_
.
Resize
(
x_resized_dims
);
out
->
Resize
(
out_resized_dims
);
}
Tensor
trans_x
(
x_
.
type
());
Tensor
trans_out
(
out
->
type
());
// Transpose input and output in case that axis is 0.
if
(
axis
==
0
)
{
if
(
out_rank
==
1U
)
{
trans_out
=
*
out
;
std
::
vector
<
int
>
perm_x
{
1
,
0
};
auto
x_dims_vec
=
phi
::
vectorize
(
x_
.
dims
());
for
(
int
i
=
0
;
i
<
x_
.
dims
().
size
();
++
i
)
{
x_dims_vec
[
i
]
=
x_
.
dims
()[
perm_x
[
i
]];
}
trans_x
.
Resize
(
phi
::
make_ddim
(
x_dims_vec
));
trans_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
perm_x
.
size
(),
dev_ctx
,
x_
,
&
trans_x
,
perm_x
);
}
else
{
std
::
vector
<
int
>
perm_out
{
1
,
0
};
auto
out_dims_vec
=
phi
::
vectorize
(
out
->
dims
());
for
(
int
i
=
0
;
i
<
out
->
dims
().
size
();
++
i
)
{
out_dims_vec
[
i
]
=
out
->
dims
()[
perm_out
[
i
]];
}
trans_out
.
Resize
(
phi
::
make_ddim
(
out_dims_vec
));
trans_out
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
perm_out
.
size
(),
dev_ctx
,
*
out
,
&
trans_out
,
perm_out
);
std
::
vector
<
int
>
perm_x
{
2
,
1
,
0
};
auto
x_dims_vec
=
phi
::
vectorize
(
x_
.
dims
());
for
(
int
i
=
0
;
i
<
x_
.
dims
().
size
();
++
i
)
{
x_dims_vec
[
i
]
=
x_
.
dims
()[
perm_x
[
i
]];
}
trans_x
.
Resize
(
phi
::
make_ddim
(
x_dims_vec
));
trans_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
perm_x
.
size
(),
dev_ctx
,
x_
,
&
trans_x
,
perm_x
);
}
}
else
{
trans_x
=
x_
;
trans_out
=
*
out
;
}
OverlapAddFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
&
trans_x
,
&
trans_out
,
seq_length
,
frame_length
,
n_frames
,
hop_length
,
/*is_grad*/
false
);
// Transpose output in case axis is 0.
if
(
axis
==
0
&&
out_rank
>
1U
)
{
std
::
vector
<
int
>
perm_out
{
1
,
0
};
TransCompute
<
DeviceContext
,
T
>
(
perm_out
.
size
(),
dev_ctx
,
trans_out
,
out
,
perm_out
);
}
// Restore output dims when the number of dims is larger than 2.
if
(
out_rank
>
2
)
{
std
::
vector
<
int64_t
>
restored_out_shape
;
for
(
int
i
=
0
;
i
<
preserved_dims
.
size
();
i
++
)
{
restored_out_shape
.
push_back
(
preserved_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (seq_length, ...)
restored_out_shape
.
insert
(
restored_out_shape
.
begin
(),
seq_length
);
}
else
{
// (..., seq_length)
restored_out_shape
.
push_back
(
seq_length
);
}
out
->
Resize
(
phi
::
make_ddim
(
restored_out_shape
));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
OverlapAddGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
size_t
d_out_rank
=
d_out
->
dims
().
size
();
const
size_t
d_x_rank
=
d_x
->
dims
().
size
();
const
int
hop_length
=
ctx
.
Attr
<
int
>
(
"hop_length"
);
const
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
int
n_frames
=
(
axis
==
0
)
?
d_x
->
dims
()[
0
]
:
d_x
->
dims
()[
d_x_rank
-
1
];
const
int
frame_length
=
(
axis
==
0
)
?
d_x
->
dims
()[
1
]
:
d_x
->
dims
()[
d_x_rank
-
2
];
const
int
seq_length
=
(
axis
==
0
)
?
d_out
->
dims
()[
0
]
:
d_out
->
dims
()[
d_out_rank
-
1
];
auto
&
dev_ctx
=
ctx
.
device_context
<
DeviceContext
>
();
// When the number of input dims is larger than 2, it needs to copy
// from x to resize input into 2d and output into 3d. Morevoer, output
// dims will be restored at the last step.
Tensor
d_out_
(
d_out
->
type
());
d_out_
=
*
d_out
;
framework
::
DDim
preserved_dims
;
if
(
d_out_rank
>
2
)
{
// Save dims used to flatten both input and output tensors and restore
// output tensor.
framework
::
DDim
d_x_resized_dims
;
framework
::
DDim
d_out_resized_dims
;
if
(
axis
==
0
)
{
preserved_dims
=
phi
::
slice_ddim
(
d_out_
.
dims
(),
1
,
d_out_rank
);
d_x_resized_dims
=
{
n_frames
,
frame_length
,
phi
::
product
(
preserved_dims
)};
d_out_resized_dims
=
{
seq_length
,
phi
::
product
(
preserved_dims
)};
}
else
{
preserved_dims
=
phi
::
slice_ddim
(
d_out_
.
dims
(),
0
,
d_out_rank
-
1
);
d_x_resized_dims
=
{
phi
::
product
(
preserved_dims
),
frame_length
,
n_frames
};
d_out_resized_dims
=
{
phi
::
product
(
preserved_dims
),
seq_length
};
}
d_x
->
Resize
(
d_x_resized_dims
);
d_out_
.
Resize
(
d_out_resized_dims
);
}
Tensor
trans_d_x
(
d_x
->
type
());
Tensor
trans_d_out
(
d_out_
.
type
());
// Transpose input and output in case that axis is 0.
if
(
axis
==
0
)
{
if
(
d_out_rank
==
1U
)
{
trans_d_out
=
d_out_
;
std
::
vector
<
int
>
perm_d_x
{
1
,
0
};
auto
d_x_dims_vec
=
phi
::
vectorize
(
d_x
->
dims
());
for
(
int
i
=
0
;
i
<
d_x
->
dims
().
size
();
++
i
)
{
d_x_dims_vec
[
i
]
=
d_x
->
dims
()[
perm_d_x
[
i
]];
}
trans_d_x
.
Resize
(
phi
::
make_ddim
(
d_x_dims_vec
));
trans_d_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
perm_d_x
.
size
(),
dev_ctx
,
*
d_x
,
&
trans_d_x
,
perm_d_x
);
}
else
{
std
::
vector
<
int
>
perm_d_out
{
1
,
0
};
auto
d_out_dims_vec
=
phi
::
vectorize
(
d_out_
.
dims
());
for
(
int
i
=
0
;
i
<
d_out_
.
dims
().
size
();
++
i
)
{
d_out_dims_vec
[
i
]
=
d_out_
.
dims
()[
perm_d_out
[
i
]];
}
trans_d_out
.
Resize
(
phi
::
make_ddim
(
d_out_dims_vec
));
trans_d_out
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
perm_d_out
.
size
(),
dev_ctx
,
d_out_
,
&
trans_d_out
,
perm_d_out
);
std
::
vector
<
int
>
perm_d_x
{
2
,
1
,
0
};
auto
d_x_dims_vec
=
phi
::
vectorize
(
d_x
->
dims
());
for
(
int
i
=
0
;
i
<
d_x
->
dims
().
size
();
++
i
)
{
d_x_dims_vec
[
i
]
=
d_x
->
dims
()[
perm_d_x
[
i
]];
}
trans_d_x
.
Resize
(
phi
::
make_ddim
(
d_x_dims_vec
));
trans_d_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
perm_d_x
.
size
(),
dev_ctx
,
*
d_x
,
&
trans_d_x
,
perm_d_x
);
}
}
else
{
trans_d_x
=
*
d_x
;
trans_d_out
=
d_out_
;
}
OverlapAddFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
&
trans_d_out
,
&
trans_d_x
,
seq_length
,
frame_length
,
n_frames
,
hop_length
,
/*is_grad*/
true
);
// Transpose output in case axis is 0.
if
(
axis
==
0
)
{
if
(
d_out_rank
==
1U
)
{
std
::
vector
<
int
>
perm_d_x
{
1
,
0
};
TransCompute
<
DeviceContext
,
T
>
(
perm_d_x
.
size
(),
dev_ctx
,
trans_d_x
,
d_x
,
perm_d_x
);
}
else
{
std
::
vector
<
int
>
perm_d_x
{
2
,
1
,
0
};
TransCompute
<
DeviceContext
,
T
>
(
perm_d_x
.
size
(),
dev_ctx
,
trans_d_x
,
d_x
,
perm_d_x
);
}
}
// Restore output dims when the number of dims is larger than 2.
if
(
d_out_rank
>
2
)
{
std
::
vector
<
int64_t
>
restored_d_x_shape
;
for
(
int
i
=
0
;
i
<
preserved_dims
.
size
();
i
++
)
{
restored_d_x_shape
.
push_back
(
preserved_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (n_frames, frame_length, ...)
restored_d_x_shape
.
insert
(
restored_d_x_shape
.
begin
(),
frame_length
);
restored_d_x_shape
.
insert
(
restored_d_x_shape
.
begin
(),
n_frames
);
}
else
{
// (..., frame_length, n_frames)
restored_d_x_shape
.
push_back
(
frame_length
);
restored_d_x_shape
.
push_back
(
n_frames
);
}
d_x
->
Resize
(
phi
::
make_ddim
(
restored_d_x_shape
));
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
2a8219c1
...
...
@@ -2648,3 +2648,13 @@
kernel
:
func
:
eig
backward
:
eig_grad
# overlap_add
-
api
:
overlap_add
args
:
(Tensor x, int hop_length, int axis)
output
:
Tensor
infer_meta
:
func
:
OverlapAddInferMeta
kernel
:
func
:
overlap_add
backward
:
overlap_add_grad
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
2a8219c1
...
...
@@ -914,10 +914,10 @@
forward
:
grid_sample (Tensor x, Tensor grid, str mode, str padding_mode, bool align_corners) -> Tensor(out)
args
:
(Tensor x, Tensor grid, Tensor out_grad, str mode, str padding_mode, bool align_corners)
output
:
Tensor(x_grad), Tensor(grid_grad)
infer_meta
:
infer_meta
:
func
:
GeneralBinaryGradInferMeta
param
:
[
x
,
grid
]
kernel
:
kernel
:
func
:
grid_sample_grad
data_type
:
x
...
...
@@ -1552,6 +1552,16 @@
kernel
:
func
:
norm_grad
-
backward_api
:
overlap_add_grad
forward
:
overlap_add(Tensor x, int hop_length, int axis) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, int hop_length, int axis)
output
:
Tensor(x_grad)
infer_meta
:
func
:
OverlapAddGradInferMeta
kernel
:
func
:
overlap_add_grad
data_type
:
x
-
backward_api
:
p_norm_grad
forward
:
p_norm(Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector)
...
...
paddle/phi/infermeta/backward.cc
浏览文件 @
2a8219c1
...
...
@@ -609,6 +609,18 @@ void NllLossGradInferMeta(const MetaTensor& x,
}
}
void
OverlapAddGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
out_grad
,
int
hop_length
,
int
axis
,
MetaTensor
*
x_grad
)
{
const
auto
x_dims
=
x
.
dims
();
if
(
x_grad
!=
nullptr
)
{
x_grad
->
set_dims
(
x_dims
);
x_grad
->
set_dtype
(
x
.
dtype
());
}
}
void
PixelUnshuffleGradInferMeta
(
const
MetaTensor
&
out_grad
,
int
downscale_factor
,
const
std
::
string
&
data_format
,
...
...
paddle/phi/infermeta/backward.h
浏览文件 @
2a8219c1
...
...
@@ -262,6 +262,12 @@ void PixelUnshuffleGradInferMeta(const MetaTensor& out_grad,
const
std
::
string
&
data_format
,
MetaTensor
*
x_grad
);
void
OverlapAddGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
out_grad
,
int
hop_length
,
int
axis
,
MetaTensor
*
x_grad
);
void
PsroiPoolGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
rois
,
const
MetaTensor
&
rois_num
,
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
2a8219c1
...
...
@@ -1725,6 +1725,90 @@ void NormInferMeta(const MetaTensor& x,
}
}
void
OverlapAddInferMeta
(
const
MetaTensor
&
x
,
int
hop_length
,
int
axis
,
MetaTensor
*
out
,
MetaConfig
config
)
{
const
auto
x_dims
=
x
.
dims
();
const
int
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_rank
,
2
,
errors
::
InvalidArgument
(
"Input(X) of OverlapAddOp should be a tensor which contains "
"at least 2 dimensions, but got rank %s."
,
x_rank
));
PADDLE_ENFORCE_GT
(
hop_length
,
0
,
errors
::
InvalidArgument
(
"Attribute(hop_length) of OverlapAddOp should be greater "
"than 0, but got %s."
,
hop_length
));
PADDLE_ENFORCE_EQ
(
(
axis
==
0
||
axis
==
-
1
),
true
,
errors
::
InvalidArgument
(
"Attribute(axis) of OverlapAddOp should 0 or -1, but got %s."
,
axis
));
std
::
vector
<
int64_t
>
output_shape
;
int
n_frames
;
int
frame_length
;
int
seq_length
;
int
start_axis
;
int
end_axis
;
if
(
axis
==
0
)
{
n_frames
=
x_dims
[
0
];
frame_length
=
x_dims
[
1
];
start_axis
=
2
;
end_axis
=
x_rank
-
1
;
}
else
{
n_frames
=
x_dims
[
x_rank
-
1
];
frame_length
=
x_dims
[
x_rank
-
2
];
start_axis
=
0
;
end_axis
=
x_rank
-
3
;
}
bool
contain_unknown_dim
=
phi
::
contain_unknown_dim
(
x_dims
);
bool
check
=
config
.
is_runtime
||
!
contain_unknown_dim
;
if
(
check
)
{
PADDLE_ENFORCE_LE
(
hop_length
,
frame_length
,
errors
::
InvalidArgument
(
"Attribute(hop_length) of OverlapAddOp should be less or equal "
"than frame_length, but got hop_length(%s) > frame_length(%s)."
,
hop_length
,
frame_length
));
}
if
(
n_frames
==
-
1
)
{
seq_length
=
-
1
;
}
else
{
seq_length
=
(
n_frames
-
1
)
*
hop_length
+
frame_length
;
}
// It won't go into for loop when x_rank == 2U.
for
(
int
i
=
start_axis
;
i
<=
end_axis
;
i
++
)
{
output_shape
.
push_back
(
x_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (seq_length, ...)
output_shape
.
insert
(
output_shape
.
begin
(),
seq_length
);
}
else
{
// (..., seq_length)
output_shape
.
push_back
(
seq_length
);
}
out
->
set_dims
(
phi
::
make_ddim
(
output_shape
));
}
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
2a8219c1
...
...
@@ -235,6 +235,12 @@ void NormInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaTensor
*
norm
);
void
OverlapAddInferMeta
(
const
MetaTensor
&
x
,
int
hop_length
,
int
axis
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
...
...
@@ -542,4 +548,5 @@ void ChannelShuffleInferMeta(const MetaTensor& x,
MetaTensor
*
out
);
void
IdentityLossInferMeta
(
const
MetaTensor
&
x
,
int
reduction
,
MetaTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/overlap_add_grad_kernel.cc
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/overlap_add_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/overlap_add_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
OverlapAddGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
int
hop_length
,
int
axis
,
DenseTensor
*
x_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
const
size_t
out_grad_rank
=
out_grad
.
dims
().
size
();
const
size_t
x_grad_rank
=
x_grad
->
dims
().
size
();
const
int
n_frames
=
(
axis
==
0
)
?
x_grad
->
dims
()[
0
]
:
x_grad
->
dims
()[
x_grad_rank
-
1
];
const
int
frame_length
=
(
axis
==
0
)
?
x_grad
->
dims
()[
1
]
:
x_grad
->
dims
()[
x_grad_rank
-
2
];
const
int
seq_length
=
(
axis
==
0
)
?
out_grad
.
dims
()[
0
]
:
out_grad
.
dims
()[
out_grad_rank
-
1
];
// When the number of input dims is larger than 2, it needs to copy
// from x to resize input into 2d and output into 3d. Morevoer, output
// dims will be restored at the last step.
DenseTensor
out_grad_
(
out_grad
.
type
());
out_grad_
=
out_grad
;
phi
::
DDim
preserved_dims
;
if
(
out_grad_rank
>
2
)
{
// Save dims used to flatten both input and output tensors and restore
// output tensor.
phi
::
DDim
x_grad_resized_dims
;
phi
::
DDim
out_grad_resized_dims
;
if
(
axis
==
0
)
{
preserved_dims
=
phi
::
slice_ddim
(
out_grad_
.
dims
(),
1
,
out_grad_rank
);
x_grad_resized_dims
=
{
n_frames
,
frame_length
,
phi
::
product
(
preserved_dims
)};
out_grad_resized_dims
=
{
seq_length
,
phi
::
product
(
preserved_dims
)};
}
else
{
preserved_dims
=
phi
::
slice_ddim
(
out_grad_
.
dims
(),
0
,
out_grad_rank
-
1
);
x_grad_resized_dims
=
{
phi
::
product
(
preserved_dims
),
frame_length
,
n_frames
};
out_grad_resized_dims
=
{
phi
::
product
(
preserved_dims
),
seq_length
};
}
x_grad
->
Resize
(
x_grad_resized_dims
);
out_grad_
.
Resize
(
out_grad_resized_dims
);
}
DenseTensor
trans_x_grad
(
x_grad
->
type
());
DenseTensor
trans_out_grad
(
out_grad_
.
type
());
// Transpose input and output in case that axis is 0.
if
(
axis
==
0
)
{
if
(
out_grad_rank
==
1U
)
{
trans_out_grad
=
out_grad_
;
std
::
vector
<
int
>
perm_x_grad
{
1
,
0
};
auto
x_grad_dims_vec
=
phi
::
vectorize
(
x_grad
->
dims
());
for
(
int
i
=
0
;
i
<
x_grad
->
dims
().
size
();
++
i
)
{
x_grad_dims_vec
[
i
]
=
x_grad
->
dims
()[
perm_x_grad
[
i
]];
}
trans_x_grad
.
Resize
(
phi
::
make_ddim
(
x_grad_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x_grad
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
*
x_grad
,
&
trans_x_grad
,
perm_x_grad
);
}
else
{
std
::
vector
<
int
>
perm_d_out
{
1
,
0
};
auto
out_grad_dims_vec
=
phi
::
vectorize
(
out_grad_
.
dims
());
for
(
int
i
=
0
;
i
<
out_grad_
.
dims
().
size
();
++
i
)
{
out_grad_dims_vec
[
i
]
=
out_grad_
.
dims
()[
perm_d_out
[
i
]];
}
trans_out_grad
.
Resize
(
phi
::
make_ddim
(
out_grad_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_out_grad
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_d_out
.
size
(),
dev_ctx
,
out_grad_
,
&
trans_out_grad
,
perm_d_out
);
std
::
vector
<
int
>
perm_x_grad
{
2
,
1
,
0
};
auto
x_grad_dims_vec
=
phi
::
vectorize
(
x_grad
->
dims
());
for
(
int
i
=
0
;
i
<
x_grad
->
dims
().
size
();
++
i
)
{
x_grad_dims_vec
[
i
]
=
x_grad
->
dims
()[
perm_x_grad
[
i
]];
}
trans_x_grad
.
Resize
(
phi
::
make_ddim
(
x_grad_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x_grad
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
*
x_grad
,
&
trans_x_grad
,
perm_x_grad
);
}
}
else
{
trans_x_grad
=
*
x_grad
;
trans_out_grad
=
out_grad_
;
}
OverlapAddFunctor
<
Context
,
T
>
()(
dev_ctx
,
&
trans_out_grad
,
&
trans_x_grad
,
seq_length
,
frame_length
,
n_frames
,
hop_length
,
/*is_grad*/
true
);
// Transpose output in case axis is 0.
if
(
axis
==
0
)
{
if
(
out_grad_rank
==
1U
)
{
std
::
vector
<
int
>
perm_x_grad
{
1
,
0
};
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
trans_x_grad
,
x_grad
,
perm_x_grad
);
}
else
{
std
::
vector
<
int
>
perm_x_grad
{
2
,
1
,
0
};
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
trans_x_grad
,
x_grad
,
perm_x_grad
);
}
}
// Restore output dims when the number of dims is larger than 2.
if
(
out_grad_rank
>
2
)
{
std
::
vector
<
int64_t
>
restored_x_grad_shape
;
for
(
int
i
=
0
;
i
<
preserved_dims
.
size
();
i
++
)
{
restored_x_grad_shape
.
push_back
(
preserved_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (n_frames, frame_length, ...)
restored_x_grad_shape
.
insert
(
restored_x_grad_shape
.
begin
(),
frame_length
);
restored_x_grad_shape
.
insert
(
restored_x_grad_shape
.
begin
(),
n_frames
);
}
else
{
// (..., frame_length, n_frames)
restored_x_grad_shape
.
push_back
(
frame_length
);
restored_x_grad_shape
.
push_back
(
n_frames
);
}
x_grad
->
Resize
(
phi
::
make_ddim
(
restored_x_grad_shape
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
overlap_add_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
OverlapAddGradKernel
,
int
,
int64_t
,
float
,
double
,
paddle
::
platform
::
complex
<
float
>
,
paddle
::
platform
::
complex
<
double
>
)
{}
paddle/phi/kernels/cpu/overlap_add_kernel.cc
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/overlap_add_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/overlap_add_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
OverlapAddKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
hop_length
,
int
axis
,
DenseTensor
*
out
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
size_t
x_rank
=
x
.
dims
().
size
();
const
size_t
out_rank
=
out
->
dims
().
size
();
const
int
n_frames
=
(
axis
==
0
)
?
x
.
dims
()[
0
]
:
x
.
dims
()[
x_rank
-
1
];
const
int
frame_length
=
(
axis
==
0
)
?
x
.
dims
()[
1
]
:
x
.
dims
()[
x_rank
-
2
];
const
int
seq_length
=
(
axis
==
0
)
?
out
->
dims
()[
0
]
:
out
->
dims
()[
out_rank
-
1
];
// auto& dev_ctx = ctx.device_context<Context>();
DenseTensor
x_
(
x
.
type
());
x_
=
x
;
phi
::
DDim
preserved_dims
;
if
(
out_rank
>
2
)
{
// Save dims used to flatten both input and output tensors and restore
// output tensor.
phi
::
DDim
x_resized_dims
;
phi
::
DDim
out_resized_dims
;
if
(
axis
==
0
)
{
preserved_dims
=
phi
::
slice_ddim
(
out
->
dims
(),
1
,
out_rank
);
x_resized_dims
=
{
n_frames
,
frame_length
,
phi
::
product
(
preserved_dims
)};
out_resized_dims
=
{
seq_length
,
phi
::
product
(
preserved_dims
)};
}
else
{
preserved_dims
=
phi
::
slice_ddim
(
out
->
dims
(),
0
,
out_rank
-
1
);
x_resized_dims
=
{
phi
::
product
(
preserved_dims
),
frame_length
,
n_frames
};
out_resized_dims
=
{
phi
::
product
(
preserved_dims
),
seq_length
};
}
x_
.
Resize
(
x_resized_dims
);
out
->
Resize
(
out_resized_dims
);
}
DenseTensor
trans_x
(
x_
.
type
());
DenseTensor
trans_out
(
out
->
type
());
// Transpose input and output in case that axis is 0.
if
(
axis
==
0
)
{
if
(
out_rank
==
1U
)
{
trans_out
=
*
out
;
std
::
vector
<
int
>
perm_x
{
1
,
0
};
auto
x_dims_vec
=
phi
::
vectorize
(
x_
.
dims
());
for
(
int
i
=
0
;
i
<
x_
.
dims
().
size
();
++
i
)
{
x_dims_vec
[
i
]
=
x_
.
dims
()[
perm_x
[
i
]];
}
trans_x
.
Resize
(
phi
::
make_ddim
(
x_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x
.
size
(),
dev_ctx
,
x_
,
&
trans_x
,
perm_x
);
}
else
{
std
::
vector
<
int
>
perm_out
{
1
,
0
};
auto
out_dims_vec
=
phi
::
vectorize
(
out
->
dims
());
for
(
int
i
=
0
;
i
<
out
->
dims
().
size
();
++
i
)
{
out_dims_vec
[
i
]
=
out
->
dims
()[
perm_out
[
i
]];
}
trans_out
.
Resize
(
phi
::
make_ddim
(
out_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_out
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_out
.
size
(),
dev_ctx
,
*
out
,
&
trans_out
,
perm_out
);
std
::
vector
<
int
>
perm_x
{
2
,
1
,
0
};
auto
x_dims_vec
=
phi
::
vectorize
(
x_
.
dims
());
for
(
int
i
=
0
;
i
<
x_
.
dims
().
size
();
++
i
)
{
x_dims_vec
[
i
]
=
x_
.
dims
()[
perm_x
[
i
]];
}
trans_x
.
Resize
(
phi
::
make_ddim
(
x_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x
.
size
(),
dev_ctx
,
x_
,
&
trans_x
,
perm_x
);
}
}
else
{
trans_x
=
x_
;
trans_out
=
*
out
;
}
OverlapAddFunctor
<
Context
,
T
>
()(
dev_ctx
,
&
trans_x
,
&
trans_out
,
seq_length
,
frame_length
,
n_frames
,
hop_length
,
/*is_grad*/
false
);
// Transpose output in case axis is 0.
if
(
axis
==
0
&&
out_rank
>
1U
)
{
std
::
vector
<
int
>
perm_out
{
1
,
0
};
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_out
.
size
(),
dev_ctx
,
trans_out
,
out
,
perm_out
);
}
// Restore output dims when the number of dims is larger than 2.
if
(
out_rank
>
2
)
{
std
::
vector
<
int64_t
>
restored_out_shape
;
for
(
int
i
=
0
;
i
<
preserved_dims
.
size
();
i
++
)
{
restored_out_shape
.
push_back
(
preserved_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (seq_length, ...)
restored_out_shape
.
insert
(
restored_out_shape
.
begin
(),
seq_length
);
}
else
{
// (..., seq_length)
restored_out_shape
.
push_back
(
seq_length
);
}
out
->
Resize
(
phi
::
make_ddim
(
restored_out_shape
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
overlap_add
,
CPU
,
ALL_LAYOUT
,
phi
::
OverlapAddKernel
,
int
,
int64_t
,
float
,
double
,
paddle
::
platform
::
complex
<
float
>
,
paddle
::
platform
::
complex
<
double
>
)
{}
paddle/phi/kernels/funcs/overlap_add_functor.h
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/seq2col.h"
namespace
phi
{
template
<
typename
Context
,
typename
T
>
struct
OverlapAddFunctor
{
void
operator
()(
const
Context
&
dev_ctx
,
const
DenseTensor
*
input
,
DenseTensor
*
output
,
size_t
seq_length
,
size_t
frame_length
,
size_t
n_frames
,
size_t
hop_length
,
bool
is_grad
=
false
)
const
{
auto
numel
=
output
->
numel
();
const
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
output_data
=
output
->
data
<
T
>
();
phi
::
funcs
::
ForRange
<
Context
>
for_range
(
dev_ctx
,
numel
);
if
(
!
is_grad
)
{
phi
::
funcs
::
Col2SeqFunctor
<
T
>
functor
(
input_data
,
output_data
,
seq_length
,
frame_length
,
n_frames
,
hop_length
);
for_range
(
functor
);
}
else
{
phi
::
funcs
::
Seq2ColFunctor
<
T
>
functor
(
input_data
,
output_data
,
seq_length
,
frame_length
,
n_frames
,
hop_length
);
for_range
(
functor
);
}
}
};
}
// namespace phi
paddle/phi/kernels/gpu/overlap_add_grad_kernel.cu
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/overlap_add_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/overlap_add_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
OverlapAddGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
int
hop_length
,
int
axis
,
DenseTensor
*
x_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
const
size_t
out_grad_rank
=
out_grad
.
dims
().
size
();
const
size_t
x_grad_rank
=
x_grad
->
dims
().
size
();
const
int
n_frames
=
(
axis
==
0
)
?
x_grad
->
dims
()[
0
]
:
x_grad
->
dims
()[
x_grad_rank
-
1
];
const
int
frame_length
=
(
axis
==
0
)
?
x_grad
->
dims
()[
1
]
:
x_grad
->
dims
()[
x_grad_rank
-
2
];
const
int
seq_length
=
(
axis
==
0
)
?
out_grad
.
dims
()[
0
]
:
out_grad
.
dims
()[
out_grad_rank
-
1
];
// When the number of input dims is larger than 2, it needs to copy
// from x to resize input into 2d and output into 3d. Morevoer, output
// dims will be restored at the last step.
DenseTensor
out_grad_
(
out_grad
.
type
());
out_grad_
=
out_grad
;
phi
::
DDim
preserved_dims
;
if
(
out_grad_rank
>
2
)
{
// Save dims used to flatten both input and output tensors and restore
// output tensor.
phi
::
DDim
x_grad_resized_dims
;
phi
::
DDim
out_grad_resized_dims
;
if
(
axis
==
0
)
{
preserved_dims
=
phi
::
slice_ddim
(
out_grad_
.
dims
(),
1
,
out_grad_rank
);
x_grad_resized_dims
=
{
n_frames
,
frame_length
,
phi
::
product
(
preserved_dims
)};
out_grad_resized_dims
=
{
seq_length
,
phi
::
product
(
preserved_dims
)};
}
else
{
preserved_dims
=
phi
::
slice_ddim
(
out_grad_
.
dims
(),
0
,
out_grad_rank
-
1
);
x_grad_resized_dims
=
{
phi
::
product
(
preserved_dims
),
frame_length
,
n_frames
};
out_grad_resized_dims
=
{
phi
::
product
(
preserved_dims
),
seq_length
};
}
x_grad
->
Resize
(
x_grad_resized_dims
);
out_grad_
.
Resize
(
out_grad_resized_dims
);
}
DenseTensor
trans_x_grad
(
x_grad
->
type
());
DenseTensor
trans_out_grad
(
out_grad_
.
type
());
// Transpose input and output in case that axis is 0.
if
(
axis
==
0
)
{
if
(
out_grad_rank
==
1U
)
{
trans_out_grad
=
out_grad_
;
std
::
vector
<
int
>
perm_x_grad
{
1
,
0
};
auto
x_grad_dims_vec
=
phi
::
vectorize
(
x_grad
->
dims
());
for
(
int
i
=
0
;
i
<
x_grad
->
dims
().
size
();
++
i
)
{
x_grad_dims_vec
[
i
]
=
x_grad
->
dims
()[
perm_x_grad
[
i
]];
}
trans_x_grad
.
Resize
(
phi
::
make_ddim
(
x_grad_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x_grad
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
*
x_grad
,
&
trans_x_grad
,
perm_x_grad
);
}
else
{
std
::
vector
<
int
>
perm_d_out
{
1
,
0
};
auto
out_grad_dims_vec
=
phi
::
vectorize
(
out_grad_
.
dims
());
for
(
int
i
=
0
;
i
<
out_grad_
.
dims
().
size
();
++
i
)
{
out_grad_dims_vec
[
i
]
=
out_grad_
.
dims
()[
perm_d_out
[
i
]];
}
trans_out_grad
.
Resize
(
phi
::
make_ddim
(
out_grad_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_out_grad
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_d_out
.
size
(),
dev_ctx
,
out_grad_
,
&
trans_out_grad
,
perm_d_out
);
std
::
vector
<
int
>
perm_x_grad
{
2
,
1
,
0
};
auto
x_grad_dims_vec
=
phi
::
vectorize
(
x_grad
->
dims
());
for
(
int
i
=
0
;
i
<
x_grad
->
dims
().
size
();
++
i
)
{
x_grad_dims_vec
[
i
]
=
x_grad
->
dims
()[
perm_x_grad
[
i
]];
}
trans_x_grad
.
Resize
(
phi
::
make_ddim
(
x_grad_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x_grad
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
*
x_grad
,
&
trans_x_grad
,
perm_x_grad
);
}
}
else
{
trans_x_grad
=
*
x_grad
;
trans_out_grad
=
out_grad_
;
}
OverlapAddFunctor
<
Context
,
T
>
()(
dev_ctx
,
&
trans_out_grad
,
&
trans_x_grad
,
seq_length
,
frame_length
,
n_frames
,
hop_length
,
/*is_grad*/
true
);
// Transpose output in case axis is 0.
if
(
axis
==
0
)
{
if
(
out_grad_rank
==
1U
)
{
std
::
vector
<
int
>
perm_x_grad
{
1
,
0
};
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
trans_x_grad
,
x_grad
,
perm_x_grad
);
}
else
{
std
::
vector
<
int
>
perm_x_grad
{
2
,
1
,
0
};
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x_grad
.
size
(),
dev_ctx
,
trans_x_grad
,
x_grad
,
perm_x_grad
);
}
}
// Restore output dims when the number of dims is larger than 2.
if
(
out_grad_rank
>
2
)
{
std
::
vector
<
int64_t
>
restored_x_grad_shape
;
for
(
int
i
=
0
;
i
<
preserved_dims
.
size
();
i
++
)
{
restored_x_grad_shape
.
push_back
(
preserved_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (n_frames, frame_length, ...)
restored_x_grad_shape
.
insert
(
restored_x_grad_shape
.
begin
(),
frame_length
);
restored_x_grad_shape
.
insert
(
restored_x_grad_shape
.
begin
(),
n_frames
);
}
else
{
// (..., frame_length, n_frames)
restored_x_grad_shape
.
push_back
(
frame_length
);
restored_x_grad_shape
.
push_back
(
n_frames
);
}
x_grad
->
Resize
(
phi
::
make_ddim
(
restored_x_grad_shape
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
overlap_add_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
OverlapAddGradKernel
,
int
,
int64_t
,
float
,
double
,
paddle
::
platform
::
float16
,
paddle
::
platform
::
complex
<
float
>
,
paddle
::
platform
::
complex
<
double
>
)
{}
paddle/phi/kernels/gpu/overlap_add_kernel.cu
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/overlap_add_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/overlap_add_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
OverlapAddKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
hop_length
,
int
axis
,
DenseTensor
*
out
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
size_t
x_rank
=
x
.
dims
().
size
();
const
size_t
out_rank
=
out
->
dims
().
size
();
const
int
n_frames
=
(
axis
==
0
)
?
x
.
dims
()[
0
]
:
x
.
dims
()[
x_rank
-
1
];
const
int
frame_length
=
(
axis
==
0
)
?
x
.
dims
()[
1
]
:
x
.
dims
()[
x_rank
-
2
];
const
int
seq_length
=
(
axis
==
0
)
?
out
->
dims
()[
0
]
:
out
->
dims
()[
out_rank
-
1
];
// auto& dev_ctx = ctx.device_context<Context>();
DenseTensor
x_
(
x
.
type
());
x_
=
x
;
phi
::
DDim
preserved_dims
;
if
(
out_rank
>
2
)
{
// Save dims used to flatten both input and output tensors and restore
// output tensor.
phi
::
DDim
x_resized_dims
;
phi
::
DDim
out_resized_dims
;
if
(
axis
==
0
)
{
preserved_dims
=
phi
::
slice_ddim
(
out
->
dims
(),
1
,
out_rank
);
x_resized_dims
=
{
n_frames
,
frame_length
,
phi
::
product
(
preserved_dims
)};
out_resized_dims
=
{
seq_length
,
phi
::
product
(
preserved_dims
)};
}
else
{
preserved_dims
=
phi
::
slice_ddim
(
out
->
dims
(),
0
,
out_rank
-
1
);
x_resized_dims
=
{
phi
::
product
(
preserved_dims
),
frame_length
,
n_frames
};
out_resized_dims
=
{
phi
::
product
(
preserved_dims
),
seq_length
};
}
x_
.
Resize
(
x_resized_dims
);
out
->
Resize
(
out_resized_dims
);
}
DenseTensor
trans_x
(
x_
.
type
());
DenseTensor
trans_out
(
out
->
type
());
// Transpose input and output in case that axis is 0.
if
(
axis
==
0
)
{
if
(
out_rank
==
1U
)
{
trans_out
=
*
out
;
std
::
vector
<
int
>
perm_x
{
1
,
0
};
auto
x_dims_vec
=
phi
::
vectorize
(
x_
.
dims
());
for
(
int
i
=
0
;
i
<
x_
.
dims
().
size
();
++
i
)
{
x_dims_vec
[
i
]
=
x_
.
dims
()[
perm_x
[
i
]];
}
trans_x
.
Resize
(
phi
::
make_ddim
(
x_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x
.
size
(),
dev_ctx
,
x_
,
&
trans_x
,
perm_x
);
}
else
{
std
::
vector
<
int
>
perm_out
{
1
,
0
};
auto
out_dims_vec
=
phi
::
vectorize
(
out
->
dims
());
for
(
int
i
=
0
;
i
<
out
->
dims
().
size
();
++
i
)
{
out_dims_vec
[
i
]
=
out
->
dims
()[
perm_out
[
i
]];
}
trans_out
.
Resize
(
phi
::
make_ddim
(
out_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_out
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_out
.
size
(),
dev_ctx
,
*
out
,
&
trans_out
,
perm_out
);
std
::
vector
<
int
>
perm_x
{
2
,
1
,
0
};
auto
x_dims_vec
=
phi
::
vectorize
(
x_
.
dims
());
for
(
int
i
=
0
;
i
<
x_
.
dims
().
size
();
++
i
)
{
x_dims_vec
[
i
]
=
x_
.
dims
()[
perm_x
[
i
]];
}
trans_x
.
Resize
(
phi
::
make_ddim
(
x_dims_vec
));
dev_ctx
.
template
Alloc
<
T
>(
&
trans_x
);
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_x
.
size
(),
dev_ctx
,
x_
,
&
trans_x
,
perm_x
);
}
}
else
{
trans_x
=
x_
;
trans_out
=
*
out
;
}
OverlapAddFunctor
<
Context
,
T
>
()(
dev_ctx
,
&
trans_x
,
&
trans_out
,
seq_length
,
frame_length
,
n_frames
,
hop_length
,
/*is_grad*/
false
);
// Transpose output in case axis is 0.
if
(
axis
==
0
&&
out_rank
>
1U
)
{
std
::
vector
<
int
>
perm_out
{
1
,
0
};
phi
::
funcs
::
TransCompute
<
Context
,
T
>
(
perm_out
.
size
(),
dev_ctx
,
trans_out
,
out
,
perm_out
);
}
// Restore output dims when the number of dims is larger than 2.
if
(
out_rank
>
2
)
{
std
::
vector
<
int64_t
>
restored_out_shape
;
for
(
int
i
=
0
;
i
<
preserved_dims
.
size
();
i
++
)
{
restored_out_shape
.
push_back
(
preserved_dims
[
i
]);
}
if
(
axis
==
0
)
{
// (seq_length, ...)
restored_out_shape
.
insert
(
restored_out_shape
.
begin
(),
seq_length
);
}
else
{
// (..., seq_length)
restored_out_shape
.
push_back
(
seq_length
);
}
out
->
Resize
(
phi
::
make_ddim
(
restored_out_shape
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
overlap_add
,
GPU
,
ALL_LAYOUT
,
phi
::
OverlapAddKernel
,
int
,
int64_t
,
float
,
double
,
paddle
::
platform
::
float16
,
paddle
::
platform
::
complex
<
float
>
,
paddle
::
platform
::
complex
<
double
>
)
{}
paddle/phi/kernels/overlap_add_grad_kernel.h
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
OverlapAddGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
int
hop_length
,
int
axis
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/overlap_add_kernel.h
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
OverlapAddKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
hop_length
,
int
axis
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/overlap_add_sig.cc
0 → 100644
浏览文件 @
2a8219c1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
OverlapAddGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"overlap_add_grad"
,
{
"X"
,
"Out@GRAD"
},
{
"hop_length"
,
"axis"
},
{
"X@GRAD"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
overlap_add_grad
,
phi
::
OverlapAddGradOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_overlap_add_op.py
浏览文件 @
2a8219c1
...
...
@@ -73,6 +73,7 @@ class TestOverlapAddOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"overlap_add"
self
.
python_api
=
paddle
.
signal
.
overlap_add
self
.
shape
,
self
.
type
,
self
.
attrs
=
self
.
initTestCase
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
size
=
self
.
shape
).
astype
(
self
.
type
),
...
...
@@ -90,12 +91,12 @@ class TestOverlapAddOp(OpTest):
def
test_check_output
(
self
):
paddle
.
enable_static
()
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
paddle
.
disable_static
()
def
test_check_grad_normal
(
self
):
paddle
.
enable_static
()
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
paddle
.
disable_static
()
...
...
python/paddle/signal.py
浏览文件 @
2a8219c1
...
...
@@ -217,7 +217,9 @@ def overlap_add(x, hop_length, axis=-1, name=None):
op_type
=
'overlap_add'
if
_non_static_mode
():
if
in_dygraph_mode
():
out
=
_C_ops
.
final_state_overlap_add
(
x
,
hop_length
,
axis
)
elif
paddle
.
in_dynamic_mode
():
attrs
=
(
'hop_length'
,
hop_length
,
'axis'
,
axis
)
op
=
getattr
(
_C_ops
,
op_type
)
out
=
op
(
x
,
*
attrs
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录