/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/op_proto_maker.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/program_desc.h" namespace paddle { namespace framework { namespace ir { struct Layers { public: const ProgramDesc& main_program() { return program_; } VarDesc* data(std::string name, std::vector shape = {}, bool is_persistable = false, proto::VarType::Type data_type = proto::VarType::FP32) { return lod_tensor(name, shape, is_persistable, data_type); } VarDesc* conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias, int groups = 1, std::vector strides = {1, 1}, std::vector paddings = {0, 0}, std::string padding_algorithm = "EXPLICIT", std::vector dilations = {1, 1}, std::string data_format = "NCHW", bool use_cudnn = false) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("conv2d"); op->SetInput("Input", {input->Name()}); op->SetInput("Filter", {filter->Name()}); op->SetInput("Bias", {bias->Name()}); op->SetOutput("Output", {out->Name()}); op->SetAttr("use_cudnn", use_cudnn); op->SetAttr("groups", groups); op->SetAttr("strides", strides); op->SetAttr("paddings", paddings); op->SetAttr("padding_algorithm", padding_algorithm); op->SetAttr("dilations", dilations); op->SetAttr("data_format", data_format); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* conv2d_transpose(VarDesc* input, VarDesc* filter, VarDesc* bias, int groups = 1, std::vector strides = {1, 1}, std::vector paddings = {0, 0}, std::string padding_algorithm = "EXPLICIT", std::vector dilations = {1, 1}, std::string data_format = "NCHW") { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("conv2d_transpose"); op->SetInput("Input", {input->Name()}); op->SetInput("Filter", {filter->Name()}); op->SetInput("Bias", {bias->Name()}); op->SetOutput("Output", {out->Name()}); op->SetAttr("groups", groups); op->SetAttr("strides", strides); op->SetAttr("paddings", paddings); op->SetAttr("padding_algorithm", padding_algorithm); op->SetAttr("dilations", dilations); op->SetAttr("data_format", data_format); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* depthwise_conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias, bool use_cudnn) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("depthwise_conv2d"); op->SetInput("Input", {input->Name()}); op->SetInput("Filter", {filter->Name()}); op->SetInput("Bias", {bias->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("use_cudnn", use_cudnn); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* pool2d(VarDesc* x, bool use_cudnn, const AttributeMap* attrs = nullptr) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("pool2d"); op->SetInput("X", {x->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("use_cudnn", use_cudnn); if (attrs) { for (auto& iter : *attrs) { op->SetAttr(iter.first, iter.second); } } op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* unsqueeze2(VarDesc* x, const std::vector axes) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("unsqueeze2"); op->SetInput("X", {x->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("axes", axes); return out; } VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) { return unary_op("relu", x, out); } VarDesc* gelu(VarDesc* x, VarDesc* out = nullptr, bool approximate = true) { AttributeMap attrs; attrs["approximate"] = approximate; return unary_op("gelu", x, out, &attrs); } VarDesc* sigmoid(VarDesc* x, VarDesc* out = nullptr) { return unary_op("sigmoid", x, out); } VarDesc* tanh(VarDesc* x, VarDesc* out = nullptr) { return unary_op("tanh", x, out); } VarDesc* c_identity(VarDesc* x, VarDesc* out = nullptr, int ring_id = -1) { AttributeMap attrs; attrs["ring_id"] = ring_id; return unary_op("c_identity", x, out, &attrs); } VarDesc* c_allreduce_sum(VarDesc* x, VarDesc* out = nullptr, int ring_id = -1) { AttributeMap attrs; attrs["ring_id"] = ring_id; return unary_op("c_allreduce_sum", x, out, &attrs); } VarDesc* fc(VarDesc* input, VarDesc* w, VarDesc* bias, int in_num_col_dims = 1, std::string activation_type = "") { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("fc"); op->SetInput("Input", {input->Name()}); op->SetInput("W", {w->Name()}); op->SetInput("Bias", {bias->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("in_num_col_dims", in_num_col_dims); op->SetAttr("activation_type", activation_type); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } void lstm(VarDesc* input, VarDesc* w, VarDesc* bias, VarDesc* cell, VarDesc* batch_gate, VarDesc* hidden, VarDesc* batch_cell_pre_act, VarDesc* h0 = nullptr, VarDesc* c0 = nullptr, bool use_peepholes = true, bool is_reverse = false, std::string gate_activation = "sigmoid", std::string cell_activation = "tanh", std::string candidate_activation = "tanh") { OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("lstm"); op->SetInput("Input", {input->Name()}); op->SetInput("Weight", {w->Name()}); op->SetInput("Bias", {bias->Name()}); if (h0) { op->SetInput("H0", {h0->Name()}); } if (c0) { op->SetInput("C0", {c0->Name()}); } op->SetOutput("Hidden", {hidden->Name()}); op->SetOutput("Cell", {cell->Name()}); op->SetOutput("BatchGate", {batch_gate->Name()}); op->SetOutput("BatchCellPreAct", {batch_cell_pre_act->Name()}); op->SetAttr("use_peepholes", use_peepholes); op->SetAttr("is_reverse", is_reverse); op->SetAttr("gate_activation", gate_activation); op->SetAttr("cell_activation", cell_activation); op->SetAttr("candidate_activation", candidate_activation); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); } void gru(VarDesc* input, VarDesc* w, VarDesc* bias, VarDesc* batch_gate, VarDesc* batch_reset_hidden_prev, VarDesc* batch_hidden, VarDesc* hidden, VarDesc* h0 = nullptr, bool origin_mode = false, bool is_reverse = false, std::string activation = "tanh", std::string gate_activation = "sigmoid") { OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("gru"); op->SetInput("Input", {input->Name()}); op->SetInput("Weight", {w->Name()}); op->SetInput("Bias", {bias->Name()}); if (h0) { op->SetInput("H0", {h0->Name()}); } op->SetOutput("BatchGate", {batch_gate->Name()}); op->SetOutput("BatchResetHiddenPrev", {batch_reset_hidden_prev->Name()}); op->SetOutput("BatchHidden", {batch_hidden->Name()}); op->SetOutput("Hidden", {hidden->Name()}); op->SetAttr("origin_mode", origin_mode); op->SetAttr("is_reverse", is_reverse); op->SetAttr("activation", activation); op->SetAttr("gate_activation", gate_activation); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); } VarDesc* mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr, int x_num_col_dims = 1, int y_num_col_dims = 1, bool use_mkldnn = false) { AttributeMap attrs; attrs["x_num_col_dims"] = x_num_col_dims; attrs["y_num_col_dims"] = y_num_col_dims; attrs["use_mkldnn"] = use_mkldnn; return binary_op("mul", x, y, out, &attrs); } VarDesc* elementwise_add(VarDesc* x, VarDesc* y, VarDesc* out = nullptr, int axis = -1, bool use_mkldnn = false) { AttributeMap attrs; attrs["axis"] = axis; attrs["use_mkldnn"] = use_mkldnn; return binary_op("elementwise_add", x, y, out, &attrs); } VarDesc* elementwise_mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr, const AttributeMap* attrs = nullptr) { return binary_op("elementwise_mul", x, y, out, attrs); } VarDesc* dropout(VarDesc* x, float dropout_prob, std::string dropout_implementation) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("dropout"); op->SetInput("X", {x->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("is_test", true); op->SetAttr("dropout_prob", dropout_prob); op->SetAttr("dropout_implementation", dropout_implementation); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* concat(std::vector inputs, int axis = -1) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("concat"); std::vector input_names(inputs.size()); for (size_t i = 0; i < inputs.size(); ++i) { input_names[i] = inputs[i]->Name(); } op->SetInput("X", input_names); op->SetOutput("Out", {out->Name()}); op->SetAttr("axis", axis); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } std::vector layer_norm(VarDesc* x, VarDesc* scale = nullptr, VarDesc* bias = nullptr) { VarDesc* y = lod_tensor(unique_name()); VarDesc* mean = lod_tensor(unique_name()); VarDesc* variance = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("layer_norm"); op->SetInput("X", {x->Name()}); if (scale) { op->SetInput("Scale", {scale->Name()}); } if (bias) { op->SetInput("Bias", {bias->Name()}); } op->SetOutput("Y", {y->Name()}); op->SetOutput("Mean", {mean->Name()}); op->SetOutput("Variance", {variance->Name()}); op->SetAttr("epsilon", static_cast(1E-05)); op->SetAttr("begin_norm_axis", static_cast(1)); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); std::vector outs = {y, mean, variance}; return outs; } std::vector split(VarDesc* x, int num_or_section, int axis = 0) { std::vector outs(num_or_section); for (int i = 0; i < num_or_section; i++) { outs[i] = lod_tensor(unique_name()); } std::vector out_names(num_or_section); for (int i = 0; i < num_or_section; i++) { out_names[i] = outs[i]->Name(); } OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("split"); op->SetInput("X", {x->Name()}); op->SetOutput("Out", out_names); op->SetAttr("num_or_section", num_or_section); op->SetAttr("axis", axis); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return outs; } VarDesc* assign(VarDesc* x) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("assign"); op->SetInput("X", {x->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* matmul(VarDesc* x, VarDesc* y, VarDesc* alpha = nullptr, bool transpose_x = false, bool transpose_y = false) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("matmul"); op->SetInput("X", {x->Name()}); op->SetInput("Y", {y->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("transpose_X", transpose_x); op->SetAttr("transpose_Y", transpose_y); op->SetAttr("alpha", 1.0f); return out; } VarDesc* matmul_v2(VarDesc* x, VarDesc* y, VarDesc* alpha = nullptr, bool trans_x = false, bool trans_y = false) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("matmul_v2"); op->SetInput("X", {x->Name()}); op->SetInput("Y", {y->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("trans_x", trans_x); op->SetAttr("trans_y", trans_y); return out; } VarDesc* transpose2(VarDesc* x, std::vector axis, bool with_xshape = false) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("transpose2"); op->SetInput("X", {x->Name()}); op->SetAttr("axis", axis); op->SetOutput("Out", {out->Name()}); if (with_xshape) { VarDesc* xshape = lod_tensor(unique_name()); op->SetOutput("XShape", {xshape->Name()}); } return out; } VarDesc* reshape2(VarDesc* x, std::vector shape, bool with_xshape = false) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("reshape2"); op->SetInput("X", {x->Name()}); op->SetAttr("shape", shape); op->SetOutput("Out", {out->Name()}); if (with_xshape) { VarDesc* xshape = lod_tensor(unique_name()); op->SetOutput("XShape", {xshape->Name()}); } return out; } VarDesc* softmax(VarDesc* x, int axis) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("softmax"); op->SetInput("X", {x->Name()}); op->SetAttr("axis", axis); op->SetOutput("Out", {out->Name()}); return out; } VarDesc* scale(VarDesc* x, float scale, float bias, bool bias_after) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("scale"); op->SetInput("X", {x->Name()}); op->SetAttr("scale", scale); op->SetAttr("bias", bias); op->SetAttr("bias_after_scale", bias_after); op->SetOutput("Out", {out->Name()}); return out; } std::vector batch_norm(VarDesc* x, VarDesc* scale, VarDesc* bias, VarDesc* mean, VarDesc* variance) { VarDesc* y = lod_tensor(unique_name()); VarDesc* mean_out = lod_tensor(unique_name()); VarDesc* variance_out = lod_tensor(unique_name()); VarDesc* saved_mean = lod_tensor(unique_name()); VarDesc* saved_variance = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("batch_norm"); op->SetInput("X", {x->Name()}); op->SetInput("Scale", {scale->Name()}); op->SetInput("Bias", {bias->Name()}); op->SetInput("Mean", {mean->Name()}); op->SetInput("Variance", {variance->Name()}); op->SetOutput("Y", {y->Name()}); op->SetOutput("MeanOut", {mean_out->Name()}); op->SetOutput("VarianceOut", {variance_out->Name()}); op->SetOutput("SavedMean", {saved_mean->Name()}); op->SetOutput("SavedVariance", {saved_variance->Name()}); op->SetAttr("epsilon", static_cast(1e-5)); op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); std::vector outs = { y, mean_out, variance_out, saved_mean, saved_variance}; return outs; } VarDesc* embedding(VarDesc* x, VarDesc* weights) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("lookup_table"); op->SetInput("Ids", {x->Name()}); op->SetInput("W", {weights->Name()}); op->SetOutput("Out", {out->Name()}); return out; } VarDesc* while_loop(std::vector xs, VarDesc* cond = nullptr) { VarDesc* out = lod_tensor(unique_name()); VarDesc* step_scopes = lod_tensor(unique_name()); if (cond == nullptr) cond = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("while"); std::vector xs_names; for (auto& x : xs) xs_names.emplace_back(x->Name()); op->SetInput("X", xs_names); op->SetInput("Condition", {cond->Name()}); op->SetOutput("Out", {out->Name()}); op->SetOutput("StepScopes", {step_scopes->Name()}); op->SetAttr("sub_block", {program_.MutableBlock(0)}); op->SetAttr("is_test", true); return out; } VarDesc* shape(VarDesc* input) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("shape"); op->SetInput("Input", {input->Name()}); op->SetOutput("Out", {out->Name()}); return out; } VarDesc* slice(VarDesc* input, std::vector axes, std::vector starts, std::vector ends) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("slice"); op->SetInput("Input", {input->Name()}); op->SetOutput("Out", {out->Name()}); op->SetAttr("axes", axes); op->SetAttr("starts", starts); op->SetAttr("ends", ends); return out; } VarDesc* fill_constant_batch_size_like(VarDesc* x, int dtype, int input_dim_idx, int output_dim_idx, std::vector shape, float value) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("fill_constant_batch_size_like"); op->SetInput("Input", {x->Name()}); op->SetAttr("dtype", dtype); op->SetAttr("input_dim_idx", input_dim_idx); op->SetAttr("output_dim_idx", output_dim_idx); op->SetAttr("shape", shape); op->SetAttr("value", value); op->SetOutput("Out", {out->Name()}); return out; } VarDesc* fused_multi_transformer(VarDesc* x, VarDesc* cache_kv, VarDesc* src_mask, VarDesc* qkv_w, VarDesc* qkv_bias, VarDesc* out_linear_w, VarDesc* out_linear_bias, VarDesc* ffn1_w, VarDesc* ffn1_bias, VarDesc* ffn2_w, VarDesc* ffn2_bias, VarDesc* ln_scale, VarDesc* ln_bias, VarDesc* ffn_ln_scale, VarDesc* ffn_ln_bias, float epsilon, float dropout_rate, VarDesc* time_stamp = nullptr, VarDesc* qkv_out_scale = nullptr, VarDesc* out_linear_out_scale = nullptr, VarDesc* ffn1_out_scale = nullptr, VarDesc* ffn2_out_scale = nullptr, std::vector qkv_in_scale = {}, std::vector out_linear_in_scale = {}, std::vector ffn1_in_scale = {}, std::vector ffn2_in_scale = {}) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); std::string op_type = qkv_out_scale ? "fused_multi_transformer_int8" : "fused_multi_transformer"; op->SetType(op_type); op->SetInput("X", {x->Name()}); op->SetInput("CacheKV", {cache_kv->Name()}); op->SetInput("SrcMask", {src_mask->Name()}); op->SetInput("QKVW", {qkv_w->Name()}); op->SetInput("QKVBias", {qkv_bias->Name()}); op->SetInput("OutLinearW", {out_linear_w->Name()}); op->SetInput("OutLinearBias", {out_linear_bias->Name()}); op->SetInput("FFN1Weight", {ffn1_w->Name()}); op->SetInput("FFN1Bias", {ffn1_bias->Name()}); op->SetInput("FFN2Weight", {ffn2_w->Name()}); op->SetInput("FFN2Bias", {ffn2_bias->Name()}); op->SetInput("LnScale", {ln_scale->Name()}); op->SetInput("LnBias", {ln_bias->Name()}); op->SetInput("FFNLnScale", {ffn_ln_scale->Name()}); op->SetInput("FFNLnBias", {ffn_ln_bias->Name()}); op->SetAttr("pre_layer_norm", true); op->SetAttr("is_test", true); op->SetAttr("dropout_implementation", "upscale_in_train"); op->SetAttr("dropout_rate", dropout_rate); op->SetAttr("epsilon", epsilon); op->SetOutput("Out", {out->Name()}); if (time_stamp) { op->SetInput("TimeStep", {time_stamp->Name()}); } if (qkv_out_scale) { op->SetInput("QKVOutScale", {qkv_out_scale->Name()}); op->SetInput("OutLinearOutScale", {out_linear_out_scale->Name()}); op->SetInput("FFN1OutScale", {ffn1_out_scale->Name()}); op->SetInput("FFN2OutScale", {ffn2_out_scale->Name()}); op->SetAttr("qkv_in_scale", qkv_in_scale); op->SetAttr("out_linear_in_scale", out_linear_in_scale); op->SetAttr("ffn1_in_scale", ffn1_in_scale); op->SetAttr("ffn2_in_scale", ffn2_in_scale); } return out; } VarDesc* dequantize_linear(VarDesc* x, VarDesc* scale, VarDesc* zero_point, int bit_length = 8, int quant_axis = -1) { VarDesc* out = lod_tensor(unique_name()); OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType("dequantize_linear"); op->SetInput("X", {x->Name()}); op->SetInput("Scale", {scale->Name()}); op->SetInput("ZeroPoint", {zero_point->Name()}); op->SetAttr("bit_length", bit_length); op->SetAttr("quant_axis", quant_axis); op->SetOutput("Y", {out->Name()}); return out; } void backward(std::vector targets) { // This function is designed to simulate the structure of training program, // but is constructed differently as the actual program. BlockDesc* block = program_.MutableBlock(0); std::vector forward_ops = block->AllOps(); for (auto* var : targets) { OpDesc* none_op = block->AppendOp(); none_op->SetType("none"); none_op->SetInput("X", {var->Name()}); VarDesc* grad_var = lod_tensor(GradVarName(var->Name()), var->GetShape(), false); none_op->SetOutput("Out", {grad_var->Name()}); } for (int i = forward_ops.size() - 1; i >= 0; --i) { OpDesc* op = forward_ops[i]; OpDesc* grad_op = block->AppendOp(); grad_op->SetType(op->Type() + "_grad"); // All op's inputs are grad_op's input. for (auto name : op->InputNames()) { grad_op->SetInput(name, op->Input(name)); } // All op's outputs are grad_op's input. for (auto name : op->OutputNames()) { grad_op->SetInput(name, op->Output(name)); } // All op's outputs grad are grad_op's input. for (auto name : op->OutputNames()) { std::vector grad_var_names; for (auto var_name : op->Output(name)) { VarDesc* var = block->FindVar(var_name); VarDesc* grad_var = lod_tensor(GradVarName(var_name), var->GetShape(), false); grad_var_names.push_back(grad_var->Name()); } grad_op->SetInput(GradVarName(name), grad_var_names); } // All op's inputs grad are grad_op's output. for (auto name : op->InputNames()) { std::vector grad_var_names; for (auto var_name : op->Input(name)) { VarDesc* var = block->FindVar(var_name); VarDesc* grad_var = lod_tensor(GradVarName(var_name), var->GetShape(), false); grad_var_names.push_back(grad_var->Name()); } grad_op->SetOutput(GradVarName(name), grad_var_names); } // TODO(liuyiqun): attrs } } private: VarDesc* lod_tensor(std::string name, std::vector shape = {}, bool is_persistable = false, proto::VarType::Type data_type = proto::VarType::FP32) { auto* var = program_.MutableBlock(0)->Var(name); var->SetType(proto::VarType::LOD_TENSOR); var->SetDataType(data_type); var->SetShape(shape); var->SetPersistable(is_persistable); return var; } VarDesc* unary_op(std::string type, VarDesc* x, VarDesc* out = nullptr, const AttributeMap* attrs = nullptr) { if (!out) { out = lod_tensor(unique_name()); } OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType(type); op->SetInput("X", {x->Name()}); op->SetOutput("Out", {out->Name()}); if (attrs) { for (auto& iter : *attrs) { op->SetAttr(iter.first, iter.second); } } op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } VarDesc* binary_op(std::string type, VarDesc* x, VarDesc* y, VarDesc* out = nullptr, const AttributeMap* attrs = nullptr) { if (!out) { out = lod_tensor(unique_name()); } OpDesc* op = program_.MutableBlock(0)->AppendOp(); op->SetType(type); op->SetInput("X", {x->Name()}); op->SetInput("Y", {y->Name()}); op->SetOutput("Out", {out->Name()}); if (attrs) { for (auto& iter : *attrs) { op->SetAttr(iter.first, iter.second); } } op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), static_cast(OpRole::kForward)); return out; } std::string unique_name() { return "tmp_" + std::to_string(idx_++); } private: ProgramDesc program_; int idx_{0}; }; static std::string DebugString(OpDesc* op) { std::ostringstream os; os << "Op(" << op->Type() << "), inputs:{"; bool is_first = true; for (auto& name : op->InputNames()) { if (!is_first) { os << ", "; } os << name << "["; bool is_first_var_name = true; for (auto& var_name : op->Input(name)) { if (!is_first_var_name) { os << ", "; } os << var_name; is_first_var_name = false; } os << "]"; is_first = false; } os << "}, outputs:{"; is_first = true; for (auto& name : op->OutputNames()) { if (!is_first) { os << ", "; } os << name << "["; bool is_first_var_name = true; for (auto& var_name : op->Output(name)) { if (!is_first_var_name) { os << ", "; } os << var_name; is_first_var_name = false; } os << "]"; is_first = false; } os << "}"; return os.str(); } static std::string DebugString(const Node* node) { std::ostringstream os; if (node->IsOp() && node->Op()) { OpDesc* op = node->Op(); os << "Node(" << DebugString(op) << "), inputs:{"; bool is_first = true; for (auto* in : node->inputs) { if (!is_first) { os << ", "; } os << in->Name(); is_first = false; } os << "}, outputs:{"; is_first = true; for (auto* out : node->outputs) { if (!is_first) { os << ", "; } os << out->Name(); is_first = false; } os << "}."; } else { os << "Node(" << node->Name(); if (node->IsVar() && node->Var()) { os << "{"; bool is_first = true; for (auto dim : node->Var()->GetShape()) { if (!is_first) { os << "x"; } os << dim; is_first = false; } os << "}"; } os << "), inputs:{"; bool is_first = true; for (auto* in : node->inputs) { if (!is_first) { os << ", "; } if (in->IsOp() && in->Op()) { os << in->Op()->Type(); } is_first = false; } os << "}, outputs:{"; is_first = true; for (auto* out : node->outputs) { if (!is_first) { os << ", "; } if (out->IsOp() && out->Op()) { os << out->Op()->Type(); } is_first = false; } os << "}"; } return os.str(); } static std::string DebugString(const std::vector& nodes) { std::ostringstream os; for (auto* node : nodes) { if (node->IsOp() && node->Op()) { os << " "; } else if ((node->IsVar() && node->Var()) || node->IsCtrlVar()) { os << " "; } os << DebugString(node) << "\n"; } return os.str(); } static std::string DebugString(const std::unordered_set& nodes) { std::vector vec; for (auto* node : nodes) { vec.push_back(node); } return DebugString(vec); } static std::string DebugString(Graph* graph) { std::ostringstream os; os << "Graph: {\n" << DebugString(graph->Nodes()) << "}\n"; return os.str(); } static std::string DebugString(const std::unique_ptr& graph) { return DebugString(graph.get()); } static std::vector GetOpNodes(const std::unique_ptr& graph, std::string op_type) { std::vector rc; for (auto* node : graph->Nodes()) { if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) { rc.push_back(node); } } return rc; } static int GetNumOpNodes(const std::unique_ptr& graph, std::string op_type) { int num_nodes = 0; for (auto* node : graph->Nodes()) { if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) { num_nodes++; } } return num_nodes; } static void RegisterOpKernel(std::vector&& op_types) { auto& all_kernels = OperatorWithKernel::AllOpKernels(); platform::CPUPlace place = platform::CPUPlace(); OpKernelType mkldnn_kernel_type = OpKernelType(proto::VarType::FP32, place, DataLayout::kAnyLayout, LibraryType::kMKLDNN); auto fake_kernel_func = [](const ExecutionContext&) -> void {}; for (auto& op_name : op_types) all_kernels[op_name][mkldnn_kernel_type] = fake_kernel_func; } } // namespace ir } // namespace framework } // namespace paddle