activation.py 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17 18
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
19 20
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
21
from paddle.framework import get_default_dtype
22
from .. import functional as F
Z
zhiboniu 已提交
23
from paddle.nn import Layer
24

25 26
__all__ = []

27

Z
zhiboniu 已提交
28
class ELU(Layer):
29
    r"""
30 31
    ELU Activation.

32
    .. math::
33

34 35 36 37 38 39 40
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
41 42 43 44 45

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
46

47 48 49
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
50

51 52 53
    Examples:
        .. code-block:: python

54
            import paddle
55

Z
zhupengyang 已提交
56
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
57 58 59 60
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
61 62 63 64 65 66 67 68 69 70
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

71 72 73 74
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

75

Z
zhiboniu 已提交
76
class GELU(Layer):
77
    r"""
78 79 80 81
    GELU Activation.

    If approximate is True

82
    .. math::
83

84
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
85 86 87

    else

88
    .. math::
89

90
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
91 92 93 94 95

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
96

97 98 99
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
100

101 102 103
    Examples:
        .. code-block:: python

104 105
            import paddle
            import numpy as np
106

107
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
108

109 110
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
111

112 113
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
114 115 116 117 118 119 120 121 122 123
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

124 125 126 127
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

128

Z
zhiboniu 已提交
129
class Hardshrink(Layer):
130
    r"""
131 132 133 134 135
    Hardshrink Activation

    .. math::

        hardshrink(x)=
136 137 138 139 140 141 142
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
143 144 145 146 147 148 149 150 151 152 153 154 155 156

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

157
            import paddle
158

Z
zhupengyang 已提交
159
            x = paddle.to_tensor([-1, 0.3, 2.5])
160 161
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
162 163 164 165 166 167 168 169
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
170
        return F.hardshrink(x, self._threshold, self._name)
171

172 173 174 175
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

176

Z
zhiboniu 已提交
177
class Hardswish(Layer):
178
    r"""
179 180 181 182 183 184 185 186 187
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
188 189 190 191 192 193 194 195
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

223 224 225 226
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

227

Z
zhiboniu 已提交
228
class Tanh(Layer):
229
    r"""
W
WangXi 已提交
230 231 232
    Tanh Activation.

    .. math::
233
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
253
            print(out)
W
WangXi 已提交
254 255 256 257 258 259 260 261 262 263
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

264 265 266 267
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
268

Z
zhiboniu 已提交
269
class Hardtanh(Layer):
270
    r"""
271 272 273 274
    Hardtanh Activation

    .. math::

275 276 277 278 279 280 281 282 283
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

284 285 286 287 288 289

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
290

291 292 293
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
294

295 296 297 298 299
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
300
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
301
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
302
            out = m(x) # [-1., 0.3, 1.]
303 304 305 306 307 308 309 310 311 312 313
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

314 315 316 317
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

318

Z
zhiboniu 已提交
319
class PReLU(Layer):
320 321 322 323 324 325 326 327 328
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
329
            1 - a single parameter `alpha` is used for all input channels;
330 331 332
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
333
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
334
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
335 336
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
337 338
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
339

340
    Shape:
Q
Qi Li 已提交
341
        - input: Tensor with any shape. Default dtype is float32.
342
        - output: Tensor with the same shape as input.
343

344 345 346 347 348 349
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
350
            paddle.set_default_dtype("float64")
351 352 353 354 355 356

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
357
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
358 359 360 361 362 363 364 365 366 367 368
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

369 370 371 372 373
    def __init__(self,
                 num_parameters=1,
                 init=0.25,
                 weight_attr=None,
                 data_format="NCHW",
374 375 376 377 378 379
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
380
        self._data_format = data_format
381 382 383

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
384 385
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
386
            is_bias=False,
Q
Qi Li 已提交
387
            default_initializer=Constant(self._init))
388 389

    def forward(self, x):
390
        return F.prelu(x, self._weight, data_format=self._data_format)
391

392 393
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
394 395 396
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._data_format, self._init, self._dtype,
            name_str)
397

398

Z
zhiboniu 已提交
399
class ReLU(Layer):
400 401 402
    """
    ReLU Activation.

403
    .. math::
404

405
        ReLU(x) = max(x, 0)
406 407

    Parameters:
408 409 410 411 412 413
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
414

415 416 417
    Examples:
        .. code-block:: python

418
            import paddle
419

Z
zhupengyang 已提交
420
            x = paddle.to_tensor([-2., 0., 1.])
421 422
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
423 424
    """

425
    def __init__(self, name=None):
426
        super(ReLU, self).__init__()
427
        self._name = name
428

429 430
    def forward(self, x):
        return F.relu(x, self._name)
431

432 433 434 435
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

436

Z
zhiboniu 已提交
437
class ReLU6(Layer):
438 439 440 441 442
    """
    ReLU6 Activation

    .. math::

443
        ReLU6(x) = min(max(0,x), 6)
444 445 446 447 448 449 450 451 452 453 454 455

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

456 457
            import paddle
            import numpy as np
458

459 460 461
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
462 463 464 465 466 467 468 469 470
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

471 472 473 474
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

475

Z
zhiboniu 已提交
476
class SELU(Layer):
477
    r"""
478 479 480 481
    SELU Activation

    .. math::

482
        SELU(x)= scale *
483 484 485 486 487 488
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
489 490

    Parameters:
491 492
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
493 494 495 496 497 498 499 500 501 502
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

503 504
            import paddle
            import numpy as np
505

506
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
507 508
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
509 510 511 512 513 514 515 516 517 518 519 520 521 522
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

523 524 525 526 527
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

528

Z
zhiboniu 已提交
529
class LeakyReLU(Layer):
530
    r"""
C
ceci3 已提交
531 532
    Leaky ReLU Activation.

533
    .. math::
C
ceci3 已提交
534

535
        LeakyReLU(x)=
536 537 538 539 540 541 542
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
543 544

    Parameters:
545 546
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
547 548
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
549

550 551 552
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
553

C
ceci3 已提交
554 555 556
    Examples:
        .. code-block:: python

557
            import paddle
C
Chen Long 已提交
558
            import numpy as np
559

560
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
561
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
562
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
563 564
    """

565
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
566
        super(LeakyReLU, self).__init__()
567
        self._negative_slope = negative_slope
568
        self._name = name
C
ceci3 已提交
569

570
    def forward(self, x):
571
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
572

573 574 575 576
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
577

Z
zhiboniu 已提交
578
class Sigmoid(Layer):
579
    """
580
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
581

582
    .. math::
S
swtkiwi 已提交
583

584
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
585

586 587
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
588

589 590
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
591 592

    Returns:
593
        A callable object of Sigmoid.
594

595
    Examples:
596

597 598
        .. code-block:: python

599 600 601
          import paddle

          m = paddle.nn.Sigmoid()
602 603
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
604 605
    """

606
    def __init__(self, name=None):
607
        super(Sigmoid, self).__init__()
608
        self.name = name
609

610 611
    def forward(self, x):
        return F.sigmoid(x, self.name)
612

613 614 615 616
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

617

Z
zhiboniu 已提交
618
class Hardsigmoid(Layer):
619
    r"""
620 621 622 623 624 625 626 627 628
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
629 630 631 632 633 634 635 636
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
653
          m = paddle.nn.Hardsigmoid()
654 655 656 657 658 659 660 661 662
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
663
        return F.hardsigmoid(x, name=self.name)
664

665 666 667 668
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

669

Z
zhiboniu 已提交
670
class Softplus(Layer):
671
    r"""
672 673 674 675
    Softplus Activation

    .. math::

676 677
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
678 679

    Parameters:
680 681
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
682 683 684 685 686 687 688 689 690 691
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

692 693
            import paddle
            import numpy as np
694

695 696 697
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
698 699 700 701 702 703 704 705 706 707 708
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

709 710 711 712 713
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

714

Z
zhiboniu 已提交
715
class Softshrink(Layer):
716
    r"""
717 718 719 720
    Softshrink Activation

    .. math::

721 722 723 724 725 726 727 728 729
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

730 731

    Parameters:
732
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
733 734 735 736 737 738 739 740 741 742
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

743 744
            import paddle
            import numpy as np
745

746 747 748
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
749 750 751 752 753 754 755 756 757 758
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

759 760 761 762
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

763

Z
zhiboniu 已提交
764
class Softsign(Layer):
765
    r"""
766 767 768 769
    Softsign Activation

    .. math::

770
        Softsign(x) = \frac{x}{1 + |x|}
771 772 773 774 775 776 777 778 779 780 781 782

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

783 784
            import paddle
            import numpy as np
785

786 787 788
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
789 790 791 792 793 794 795 796 797
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

798 799 800 801
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

802

Z
zhiboniu 已提交
803
class Swish(Layer):
804
    r"""
805 806 807 808
    Swish Activation.

    .. math::

809
        Swish(x) = \frac{x}{1 + e^{-x}}
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

837 838 839 840
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

841

Z
zhiboniu 已提交
842
class Tanhshrink(Layer):
843 844 845 846 847
    """
    Tanhshrink Activation

    .. math::

848
        Tanhshrink(x) = x - tanh(x)
849 850 851 852 853 854 855 856 857 858 859 860

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

861 862
            import paddle
            import numpy as np
863

864 865 866
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
867 868 869 870 871 872 873 874 875
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

876 877 878 879
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

880

Z
zhiboniu 已提交
881
class ThresholdedReLU(Layer):
882
    r"""
883 884 885 886
    Thresholded ReLU Activation

    .. math::

887 888 889 890 891 892 893 894
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

924 925 926 927
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

928

Z
zhiboniu 已提交
929
class Silu(Layer):
M
minghaoBD 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
967
class LogSigmoid(Layer):
968
    r"""
969
    LogSigmoid Activation.
970

971
    .. math::
972

973
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
974 975 976 977 978

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
979

980 981 982
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
983

984 985 986
    Examples:
        .. code-block:: python

987
            import paddle
988

989
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
990 991
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
992 993 994 995 996 997 998
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
999
        return F.log_sigmoid(x, self._name)
1000

1001 1002 1003 1004
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1005

Z
zhiboniu 已提交
1006
class Softmax(Layer):
1007
    r"""
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1035
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1128 1129 1130 1131
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1132

Z
zhiboniu 已提交
1133
class LogSoftmax(Layer):
1134
    r"""
1135 1136 1137 1138
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1139 1140 1141 1142
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1143 1144

    Parameters:
1145 1146 1147 1148 1149 1150
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1151

1152 1153 1154
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1155 1156 1157 1158

    Examples:
        .. code-block:: python

1159 1160
            import paddle

Z
zhupengyang 已提交
1161 1162 1163 1164 1165 1166
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1167 1168 1169 1170 1171 1172 1173 1174 1175
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1176 1177
    """

1178
    def __init__(self, axis=-1, name=None):
1179 1180
        super(LogSoftmax, self).__init__()
        self._axis = axis
1181
        self._name = name
1182

1183 1184
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1185

1186 1187 1188 1189
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1190

Z
zhiboniu 已提交
1191
class Maxout(Layer):
1192
    r"""
1193 1194 1195 1196 1197 1198 1199 1200
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1201 1202 1203 1204 1205 1206 1207 1208
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1252 1253 1254 1255

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)