DepthwiseConvOpGpu.cu 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "DepthwiseConvOp.h"
16
#include "paddle/math/BaseMatrix.h"
17 18

namespace paddle {
19

20
// CUDA kernel to compute the depthwise convolution forward pass
21
template <class T>
L
liaogang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
__global__ void ConvolutionDepthwiseForward(const int nthreads,
                                            const T* const inputData,
                                            const T* const filterData,
                                            const int batchSize,
                                            const int outputChannels,
                                            const int outputHeight,
                                            const int outputWidth,
                                            const int inputChannels,
                                            const int inputHeight,
                                            const int inputWidth,
                                            const int filterMultiplier,
                                            const int filterHeight,
                                            const int filterWidth,
                                            const int strideH,
                                            const int strideW,
                                            const int paddingH,
                                            const int paddingW,
                                            T* const outputData) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
X
xzl 已提交
41 42

  if (index < nthreads) {
43 44 45 46 47
    const int batch = index / outputChannels / outputHeight / outputWidth;
    const int c_out = (index / outputHeight / outputWidth) % outputChannels;
    const int h_out = (index / outputWidth) % outputHeight;
    const int w_out = index % outputWidth;

X
xzl 已提交
48
    const int c_in = c_out / filterMultiplier;
49
    const T* weight = filterData + c_out * filterHeight * filterWidth;
50
    T value = 0;
51 52 53 54
    const int h_in_start = -paddingH + h_out * strideH;
    const int w_in_start = -paddingW + w_out * strideW;
    const int h_in_end = -paddingH + h_out * strideH + filterHeight - 1;
    const int w_in_end = -paddingW + w_out * strideW + filterWidth - 1;
L
liaogang 已提交
55 56 57 58 59 60 61 62 63 64 65 66
    if ((h_in_start >= 0) && (h_in_end < inputHeight) && (w_in_start >= 0) &&
        (w_in_end < inputWidth)) {
      for (int kh = 0; kh < filterHeight; ++kh) {
        for (int kw = 0; kw < filterWidth; ++kw) {
          const int h_in = -paddingH + h_out * strideH + kh;
          const int w_in = -paddingW + w_out * strideW + kw;
          const int offset =
              ((batch * inputChannels + c_in) * inputHeight + h_in) *
                  inputWidth +
              w_in;
          value += (*weight) * inputData[offset];
          ++weight;
X
xzl 已提交
67
        }
L
liaogang 已提交
68
      }
X
xzl 已提交
69
    } else {
L
liaogang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
      for (int kh = 0; kh < filterHeight; ++kh) {
        for (int kw = 0; kw < filterWidth; ++kw) {
          const int h_in = -paddingH + h_out * strideH + kh;
          const int w_in = -paddingW + w_out * strideW + kw;
          if ((h_in >= 0) && (h_in < inputHeight) && (w_in >= 0) &&
              (w_in < inputWidth)) {
            const int offset =
                ((batch * inputChannels + c_in) * inputHeight + h_in) *
                    inputWidth +
                w_in;
            value += (*weight) * inputData[offset];
          }
          ++weight;
        }
      }
X
xzl 已提交
85
    }
86
    outputData[index] = value;
87 88 89
  }
}

90
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
91
template <class T>
L
liaogang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
__global__ void ConvolutionDepthwiseInputBackward(const int nthreads,
                                                  const T* const top_diff,
                                                  const T* const weight_data,
                                                  const int num,
                                                  const int outputChannels,
                                                  const int outputHeight,
                                                  const int outputWidth,
                                                  const int inputChannels,
                                                  const int inputHeight,
                                                  const int inputWidth,
                                                  const int filterMultiplier,
                                                  const int filterHeight,
                                                  const int filterWidth,
                                                  const int strideH,
                                                  const int strideW,
                                                  const int paddingH,
                                                  const int paddingW,
                                                  T* const bottom_diff) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
X
xzl 已提交
111
  if (index < nthreads) {
112 113 114 115
    const int batch = index / inputChannels / inputHeight / inputWidth;
    const int c_in = (index / inputHeight / inputWidth) % inputChannels;
    const int h_in = (index / inputWidth) % inputHeight;
    const int w_in = index % inputWidth;
116

X
xzl 已提交
117
    const int c_out_start = c_in * filterMultiplier;
118

L
liaogang 已提交
119
    int h_out_start = (h_in - filterHeight + paddingH + strideH) / strideH;
120
    h_out_start = 0 > h_out_start ? 0 : h_out_start;
L
liaogang 已提交
121 122 123
    int h_out_end = (h_in + paddingH) / strideH;
    h_out_end = outputHeight - 1 < h_out_end ? outputHeight - 1 : h_out_end;
    int w_out_start = (w_in - filterWidth + paddingW + strideW) / strideW;
124
    w_out_start = 0 > w_out_start ? 0 : w_out_start;
L
liaogang 已提交
125 126
    int w_out_end = (w_in + paddingW) / strideW;
    w_out_end = outputWidth - 1 < w_out_end ? outputWidth - 1 : w_out_end;
127

128
    T value = 0;
129

L
liaogang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142
    for (int c_out = c_out_start; c_out < c_out_start + filterMultiplier;
         c_out++) {
      for (int h_out = h_out_start; h_out <= h_out_end; ++h_out) {
        const int filter_h = h_in + paddingH - h_out * strideH;
        for (int w_out = w_out_start; w_out <= w_out_end; ++w_out) {
          const int filter_w = w_in + paddingW - w_out * strideW;
          const int filter_offset = c_out * filterHeight * filterWidth +
                                    filter_h * filterWidth + filter_w;
          const int top_diff_offset =
              ((batch * outputChannels + c_out) * outputHeight + h_out) *
                  outputWidth +
              w_out;
          value += top_diff[top_diff_offset] * weight_data[filter_offset];
143
        }
L
liaogang 已提交
144
      }
145 146
    }
    bottom_diff[index] += value;
L
liaogang 已提交
147
  }
148 149
}

150
// CUDA kernel to compute the depthwise convolution backprop w.r.t filter.
151
template <class T>
L
liaogang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
__global__ void ConvolutionDepthwiseFilterBackward(const int num_i,
                                                   const int nthreads,
                                                   const T* const top_diff,
                                                   const T* const inputData,
                                                   const int num,
                                                   const int outputChannels,
                                                   const int outputHeight,
                                                   const int outputWidth,
                                                   const int inputChannels,
                                                   const int inputHeight,
                                                   const int inputWidth,
                                                   const int filterMultiplier,
                                                   const int filterHeight,
                                                   const int filterWidth,
                                                   const int strideH,
                                                   const int strideW,
                                                   const int paddingH,
                                                   const int paddingW,
                                                   T* const buffer_data) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
172
  if (index < nthreads) {
173 174
    const int h_out = (index / outputWidth) % outputHeight;
    const int w_out = index % outputWidth;
L
liaogang 已提交
175 176
    const int kh =
        (index / filterWidth / outputHeight / outputWidth) % filterHeight;
177
    const int kw = (index / outputHeight / outputWidth) % filterWidth;
178 179
    const int h_in = -paddingH + h_out * strideH + kh;
    const int w_in = -paddingW + w_out * strideW + kw;
L
liaogang 已提交
180 181 182 183
    if ((h_in >= 0) && (h_in < inputHeight) && (w_in >= 0) &&
        (w_in < inputWidth)) {
      const int c_out =
          index / (filterHeight * filterWidth * outputHeight * outputWidth);
X
xzl 已提交
184
      const int c_in = c_out / filterMultiplier;
185
      const int batch = num_i;
L
liaogang 已提交
186 187 188 189 190 191 192
      const int top_offset =
          ((batch * outputChannels + c_out) * outputHeight + h_out) *
              outputWidth +
          w_out;
      const int bottom_offset =
          ((batch * inputChannels + c_in) * inputHeight + h_in) * inputWidth +
          w_in;
193
      buffer_data[index] = top_diff[top_offset] * inputData[bottom_offset];
194 195 196 197 198 199 200
    } else {
      buffer_data[index] = 0;
    }
  }
}

template <class T>
L
liaogang 已提交
201
class DepthwiseConvFunctor<DEVICE_TYPE_GPU, T> {
202
public:
X
xzl 已提交
203
  void operator()(const T* inputData,
L
liaogang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
                  const T* filterData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterMultiplier,
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* outputData) {
220 221
    int outputSize = batchSize * outputChannels * outputHeight * outputWidth;

L
liaogang 已提交
222
    size_t blocks = (outputSize + 1024 - 1) / 1024;
223
    size_t blockX = 512;
L
liaogang 已提交
224
    size_t blockY = (blocks + 512 - 1) / 512;
225 226
    dim3 threads(1024, 1);
    dim3 grid(blockX, blockY);
227

L
liaogang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    ConvolutionDepthwiseForward<T><<<grid, threads, 0, STREAM_DEFAULT>>>(
        outputSize,
        inputData,
        filterData,
        batchSize,
        outputChannels,
        outputHeight,
        outputWidth,
        inputChannels,
        inputHeight,
        inputWidth,
        filterMultiplier,
        filterHeight,
        filterWidth,
        strideH,
        strideW,
        paddingH,
        paddingW,
        outputData);
  }
248 249 250
};

template <class T>
L
liaogang 已提交
251
class DepthwiseConvGradInputFunctor<DEVICE_TYPE_GPU, T> {
252
public:
253
  void operator()(const T* outputGrad,
L
liaogang 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                  const T* filterData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterMultiplier,
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* inputGrad) {
270
    int inputSize = batchSize * inputChannels * inputHeight * inputWidth;
271

L
liaogang 已提交
272
    size_t blocks = (inputSize + 1024 - 1) / 1024;
273
    size_t blockX = 512;
L
liaogang 已提交
274
    size_t blockY = (blocks + 512 - 1) / 512;
275 276 277
    dim3 threads(1024, 1);
    dim3 grid(blockX, blockY);

278
    ConvolutionDepthwiseInputBackward<T>
L
liaogang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        // NOLINT_NEXT_LINE(whitespace/operators)
        <<<grid, threads, 0, STREAM_DEFAULT>>>(inputSize,
                                               outputGrad,
                                               filterData,
                                               batchSize,
                                               outputChannels,
                                               outputHeight,
                                               outputWidth,
                                               inputChannels,
                                               inputHeight,
                                               inputWidth,
                                               filterMultiplier,
                                               filterHeight,
                                               filterWidth,
                                               strideH,
                                               strideW,
                                               paddingH,
                                               paddingW,
                                               inputGrad);
  }
299 300 301 302 303
};

template <class T>
class DepthwiseConvGradFilterFunctor<DEVICE_TYPE_GPU, T> {
public:
304
  void operator()(const T* outputGrad,
L
liaogang 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                  const T* inputData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterMultiplier,
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* colData,
                  T* filterGrad) {
    int colDataSize = outputChannels * filterHeight * filterWidth *
                      outputHeight * outputWidth;
324

L
liaogang 已提交
325 326 327 328 329 330 331 332 333 334
    size_t blocks = (colDataSize + 1024 - 1) / 1024;
    size_t blockX = 512;
    size_t blockY = (blocks + 512 - 1) / 512;
    dim3 threads(1024, 1);
    dim3 grid(blockX, blockY);
    BaseMatrix filterGradMatrix(outputChannels * filterHeight * filterWidth,
                                1,
                                filterGrad,
                                false,
                                true);
335

L
liaogang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    for (int i = 0; i < batchSize; i++) {
      ConvolutionDepthwiseFilterBackward<
          T><<<grid, threads, 0, STREAM_DEFAULT>>>(i,
                                                   colDataSize,
                                                   outputGrad,
                                                   inputData,
                                                   batchSize,
                                                   outputChannels,
                                                   outputHeight,
                                                   outputWidth,
                                                   inputChannels,
                                                   inputHeight,
                                                   inputWidth,
                                                   filterMultiplier,
                                                   filterHeight,
                                                   filterWidth,
                                                   strideH,
                                                   strideW,
                                                   paddingH,
                                                   paddingW,
                                                   colData);
      int K = outputHeight * outputWidth;
      int M = colDataSize / K;
359

L
liaogang 已提交
360 361
      BaseMatrix colMatrix(M, K, colData, false, true);
      filterGradMatrix.sumRows(colMatrix, (T)1.0, (T)1.0);
362
    }
L
liaogang 已提交
363
  }
364 365
};

366
#ifdef PADDLE_TYPE_DOUBLE
367 368 369
template class DepthwiseConvGradInputFunctor<DEVICE_TYPE_GPU, double>;
template class DepthwiseConvFunctor<DEVICE_TYPE_GPU, double>;
template class DepthwiseConvGradFilterFunctor<DEVICE_TYPE_GPU, double>;
X
xzl 已提交
370
#else
371 372 373
template class DepthwiseConvGradInputFunctor<DEVICE_TYPE_GPU, float>;
template class DepthwiseConvFunctor<DEVICE_TYPE_GPU, float>;
template class DepthwiseConvGradFilterFunctor<DEVICE_TYPE_GPU, float>;
374
#endif
375 376

}  // namespace paddle