Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
11588b36
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
11588b36
编写于
7月 18, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support inputchannels != outputchannels of depthwiseconv
上级
02e04b44
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
85 addition
and
57 deletion
+85
-57
paddle/function/DepthwiseConvOp.cpp
paddle/function/DepthwiseConvOp.cpp
+11
-2
paddle/function/DepthwiseConvOp.h
paddle/function/DepthwiseConvOp.h
+8
-2
paddle/function/DepthwiseConvOpGpu.cu
paddle/function/DepthwiseConvOpGpu.cu
+65
-52
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+1
-1
未找到文件。
paddle/function/DepthwiseConvOp.cpp
浏览文件 @
11588b36
...
...
@@ -30,6 +30,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -53,6 +54,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -75,6 +77,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -122,6 +125,7 @@ public:
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
size_t
filterMultiplier
=
outputChannels
/
groups_
;
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
...
...
@@ -137,6 +141,7 @@ public:
inputChannels
,
inputHeight
,
inputWidth
,
filterMultiplier
,
filterHeight
,
filterWidth
,
strideH
(),
...
...
@@ -183,6 +188,7 @@ public:
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
size_t
filterMultiplier
=
outputChannels
/
groups_
;
real
*
outputGrad
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
...
...
@@ -198,6 +204,7 @@ public:
inputChannels
,
inputHeight
,
inputWidth
,
filterMultiplier
,
filterHeight
,
filterWidth
,
strideH
(),
...
...
@@ -243,13 +250,14 @@ public:
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
size_t
filterMultiplier
=
outputChannels
/
groups_
;
real
*
outputGrad
=
inputs
[
0
].
data
<
real
>
();
real
*
inputData
=
inputs
[
1
].
data
<
real
>
();
real
*
filterGrad
=
outputs
[
0
].
data
<
real
>
();
int
size
=
inputChannels
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
int
size
=
outputChannels
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
resizeBuffer
<
Device
>
(
size
);
real
*
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
...
...
@@ -264,6 +272,7 @@ public:
inputChannels
,
inputHeight
,
inputWidth
,
filterMultiplier
,
filterHeight
,
filterWidth
,
strideH
(),
...
...
paddle/function/DepthwiseConvOp.h
浏览文件 @
11588b36
...
...
@@ -32,6 +32,7 @@ namespace paddle {
* \param[in] inputChannels channels of inputData.
* \param[in] inputHeight height of inputData.
* \param[in] inputWidth width of inputData..
* \param[in] filterMultiplier equals to outputChannels/groups_.
* \param[in] filterHeight height of filter.
* \param[in] filterWidth widht of filter.
* \param[in] strideH stride size in height direction.
...
...
@@ -53,6 +54,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -74,7 +76,8 @@ public:
* \param[in] outputWidth width of outputData.
* \param[in] inputChannels channels of input data.
* \param[in] inputHeight height of inputData.
* \param[in] inputWidth width of inputData..
* \param[in] inputWidth width of inputData.
* \param[in] filterMultiplier equals to outputChannels/groups_.
* \param[in] filterHeight height of filter.
* \param[in] filterWidth widht of filter.
* \param[in] strideH stride size in height direction.
...
...
@@ -96,6 +99,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -116,7 +120,8 @@ public:
* \param[in] outputWidth width of outputData.
* \param[in] inputChannels channels of input data.
* \param[in] inputHeight height of inputData.
* \param[in] inputWidth width of inputData..
* \param[in] inputWidth width of inputData.
* \param[in] filterMultiplier equals to outputChannels/groups_.
* \param[in] filterHeight height of filter.
* \param[in] filterWidth widht of filter.
* \param[in] strideH stride size in height direction.
...
...
@@ -140,6 +145,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
paddle/function/DepthwiseConvOpGpu.cu
浏览文件 @
11588b36
...
...
@@ -25,7 +25,7 @@ void ConvolutionDepthwiseForward(const int nthreads,
const
T
*
const
inputData
,
const
T
*
const
filterData
,
const
int
batchSize
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputChannels
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
filter
Multiplier
,
const
int
filter
Height
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
outputData
)
{
...
...
@@ -33,23 +33,25 @@ void ConvolutionDepthwiseForward(const int nthreads,
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
n
=
index
/
outputChannels
/
outputHeight
/
outputWidth
;
const
int
c
=
(
index
/
outputHeight
/
outputWidth
)
%
outputChannels
;
const
int
h
=
(
index
/
outputWidth
)
%
outputHeight
;
const
int
w
=
index
%
outputWidth
;
const
T
*
weight
=
filterData
+
c
*
filterHeight
*
filterWidth
;
const
int
batch
=
index
/
outputChannels
/
outputHeight
/
outputWidth
;
const
int
c_out
=
(
index
/
outputHeight
/
outputWidth
)
%
outputChannels
;
const
int
h_out
=
(
index
/
outputWidth
)
%
outputHeight
;
const
int
w_out
=
index
%
outputWidth
;
const
int
c_in
=
c_out
/
filterMultiplier
;
const
T
*
weight
=
filterData
+
c_out
*
filterHeight
*
filterWidth
;
T
value
=
0
;
const
int
h_in_start
=
-
paddingH
+
h
*
strideH
;
const
int
w_in_start
=
-
paddingW
+
w
*
strideW
;
const
int
h_in_end
=
-
paddingH
+
h
*
strideH
+
filterHeight
-
1
;
const
int
w_in_end
=
-
paddingW
+
w
*
strideW
+
filterWidth
-
1
;
const
int
h_in_start
=
-
paddingH
+
h
_out
*
strideH
;
const
int
w_in_start
=
-
paddingW
+
w
_out
*
strideW
;
const
int
h_in_end
=
-
paddingH
+
h
_out
*
strideH
+
filterHeight
-
1
;
const
int
w_in_end
=
-
paddingW
+
w
_out
*
strideW
+
filterWidth
-
1
;
if
((
h_in_start
>=
0
)
&&
(
h_in_end
<
inputHeight
)
&&
(
w_in_start
>=
0
)
&&
(
w_in_end
<
inputWidth
))
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
const
int
offset
=
((
n
*
inputChannels
+
c
)
*
inputHeight
+
h_in
)
const
int
h_in
=
-
paddingH
+
h
_out
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
_out
*
strideW
+
kw
;
const
int
offset
=
((
batch
*
inputChannels
+
c_in
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
++
weight
;
...
...
@@ -58,11 +60,11 @@ void ConvolutionDepthwiseForward(const int nthreads,
}
else
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
const
int
h_in
=
-
paddingH
+
h
_out
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
_out
*
strideW
+
kw
;
if
((
h_in
>=
0
)
&&
(
h_in
<
inputHeight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
inputWidth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
inputHeight
+
h_in
)
const
int
offset
=
((
batch
*
inputChannels
+
c_in
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
}
...
...
@@ -81,38 +83,42 @@ void ConvolutionDepthwiseInputBackward(const int nthreads,
const
T
*
const
top_diff
,
const
T
*
const
weight_data
,
const
int
num
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputChannels
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
filter
Multiplier
,
const
int
filter
Height
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
bottom_diff
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
n
=
index
/
inputChannels
/
inputHeight
/
inputWidth
;
const
int
c
=
(
index
/
inputHeight
/
inputWidth
)
%
inputChannels
;
const
int
h
=
(
index
/
inputWidth
)
%
inputHeight
;
const
int
w
=
index
%
inputWidth
;
const
T
*
weight
=
weight_data
+
c
*
filterHeight
*
filterWidth
;
const
int
batch
=
index
/
inputChannels
/
inputHeight
/
inputWidth
;
const
int
c
_in
=
(
index
/
inputHeight
/
inputWidth
)
%
inputChannels
;
const
int
h
_in
=
(
index
/
inputWidth
)
%
inputHeight
;
const
int
w
_in
=
index
%
inputWidth
;
const
int
c_out_start
=
c_in
*
filterMultiplier
;
T
value
=
0
;
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_out_s
=
h
+
paddingH
-
kh
;
const
int
w_out_s
=
w
+
paddingW
-
kw
;
if
(((
h_out_s
%
strideH
)
==
0
)
&&
((
w_out_s
%
strideW
)
==
0
))
{
const
int
h_out
=
h_out_s
/
strideH
;
const
int
w_out
=
w_out_s
/
strideW
;
// TODO(zhaolong) : the 'if' affect the effectiveness, it needs to optimize
if
((
h_out
>=
0
)
&&
(
h_out
<
outputHeight
)
&&
(
w_out
>=
0
)
&&
(
w_out
<
outputWidth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
outputHeight
+
h_out
)
*
outputWidth
+
w_out
;
value
+=
(
*
weight
)
*
top_diff
[
offset
];
}
for
(
int
c_out
=
c_out_start
;
c_out
<
c_out_start
+
filterMultiplier
;
c_out
++
){
//weight bixu c_out
const
T
*
weight
=
weight_data
+
c_out
*
filterHeight
*
filterWidth
;
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_out_s
=
h_in
+
paddingH
-
kh
;
const
int
w_out_s
=
w_in
+
paddingW
-
kw
;
if
(((
h_out_s
%
strideH
)
==
0
)
&&
((
w_out_s
%
strideW
)
==
0
))
{
const
int
h_out
=
h_out_s
/
strideH
;
const
int
w_out
=
w_out_s
/
strideW
;
// TODO(zhaolong) : the 'if' affect the effectiveness, it needs to optimize
if
((
h_out
>=
0
)
&&
(
h_out
<
outputHeight
)
&&
(
w_out
>=
0
)
&&
(
w_out
<
outputWidth
))
{
const
int
offset
=
((
batch
*
outputChannels
+
c_out
)
*
outputHeight
+
h_out
)
*
outputWidth
+
w_out
;
value
+=
(
*
weight
)
*
top_diff
[
offset
];
}
}
++
weight
;
}
}
++
weight
;
}
}
bottom_diff
[
index
]
+=
value
;
}
}
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t filter.
...
...
@@ -122,26 +128,27 @@ void ConvolutionDepthwiseFilterBackward(const int num_i, const int nthreads,
const
T
*
const
top_diff
,
const
T
*
const
inputData
,
const
int
num
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputChannels
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
filter
Multiplier
,
const
int
filter
Height
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
buffer_data
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
h
=
(
index
/
outputWidth
)
%
outputHeight
;
const
int
w
=
index
%
outputWidth
;
const
int
h
_out
=
(
index
/
outputWidth
)
%
outputHeight
;
const
int
w
_out
=
index
%
outputWidth
;
const
int
kh
=
(
index
/
filterWidth
/
outputHeight
/
outputWidth
)
%
filterHeight
;
const
int
kw
=
(
index
/
outputHeight
/
outputWidth
)
%
filterWidth
;
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
const
int
h_in
=
-
paddingH
+
h
_out
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
_out
*
strideW
+
kw
;
if
((
h_in
>=
0
)
&&
(
h_in
<
inputHeight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
inputWidth
))
{
const
int
c
=
index
/
filterHeight
/
filterWidth
/
outputHeight
/
outputWidth
;
const
int
n
=
num_i
;
const
int
top_offset
=
((
n
*
outputChannels
+
c
)
*
outputHeight
+
h
)
*
outputWidth
+
w
;
const
int
bottom_offset
=
((
n
*
inputChannels
+
c
)
*
inputHeight
+
h_in
)
const
int
c_out
=
index
/
filterHeight
/
filterWidth
/
outputHeight
/
outputWidth
;
const
int
c_in
=
c_out
/
filterMultiplier
;
const
int
batch
=
num_i
;
const
int
top_offset
=
((
batch
*
outputChannels
+
c_out
)
*
outputHeight
+
h_out
)
*
outputWidth
+
w_out
;
const
int
bottom_offset
=
((
batch
*
inputChannels
+
c_in
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
buffer_data
[
index
]
=
top_diff
[
top_offset
]
*
inputData
[
bottom_offset
];
}
else
{
...
...
@@ -162,6 +169,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -190,6 +198,7 @@ public:
inputChannels
,
inputHeight
,
inputWidth
,
filterMultiplier
,
filterHeight
,
filterWidth
,
strideH
,
...
...
@@ -212,6 +221,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -242,6 +252,7 @@ public:
inputChannels
,
inputHeight
,
inputWidth
,
filterMultiplier
,
filterHeight
,
filterWidth
,
strideH
,
...
...
@@ -264,6 +275,7 @@ public:
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterMultiplier
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -273,14 +285,14 @@ public:
T
*
colData
,
T
*
filterGrad
){
int
colDataSize
=
in
putChannels
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
int
colDataSize
=
out
putChannels
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
size_t
blocks
=
(
colDataSize
+
1024
-
1
)
/
1024
;
size_t
blockX
=
512
;
size_t
blockY
=
(
blocks
+
512
-
1
)
/
512
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blockX
,
blockY
);
BaseMatrix
filterGradMatrix
(
in
putChannels
*
filterHeight
*
filterWidth
,
1
,
filterGrad
,
false
,
true
);
BaseMatrix
filterGradMatrix
(
out
putChannels
*
filterHeight
*
filterWidth
,
1
,
filterGrad
,
false
,
true
);
for
(
int
i
=
0
;
i
<
batchSize
;
i
++
)
{
ConvolutionDepthwiseFilterBackward
<
T
>
...
...
@@ -296,6 +308,7 @@ public:
inputChannels
,
inputHeight
,
inputWidth
,
filterMultiplier
,
filterHeight
,
filterWidth
,
strideH
,
...
...
@@ -304,8 +317,8 @@ public:
paddingW
,
colData
);
int
M
=
colDataSize
/
outputHeight
/
outputWidth
;
int
K
=
outputHeight
*
outputWidth
;
int
M
=
colDataSize
/
K
;
BaseMatrix
colMatrix
(
M
,
K
,
colData
,
false
,
true
);
filterGradMatrix
.
sumRows
(
colMatrix
,
(
T
)
1.0
,
(
T
)
1.0
);
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
11588b36
...
...
@@ -355,7 +355,7 @@ void testDepthwiseConvLayer(const string& type, bool useGpu) {
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
2048
,
96
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
2048
,
192
/
2
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录