Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c43f6936
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c43f6936
编写于
7月 14, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify the format and delete useless comment
上级
fc8aedb1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
52 addition
and
48 deletion
+52
-48
paddle/function/DepthwiseConvOp.cpp
paddle/function/DepthwiseConvOp.cpp
+5
-7
paddle/function/DepthwiseConvOp.h
paddle/function/DepthwiseConvOp.h
+3
-1
paddle/function/DepthwiseConvOpGpu.cu
paddle/function/DepthwiseConvOpGpu.cu
+44
-40
未找到文件。
paddle/function/DepthwiseConvOp.cpp
浏览文件 @
c43f6936
...
...
@@ -15,7 +15,6 @@ limitations under the License. */
#include "DepthwiseConvOp.h"
#include "ConvOp.h"
#include "GemmFunctor.h"
//#include "paddle/math/MemoryHandle.h"
namespace
paddle
{
...
...
@@ -28,6 +27,7 @@ public:
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
...
...
@@ -114,7 +114,7 @@ public:
const
TensorShape
&
output
=
outputs
[
0
].
shape
();
size_t
batchSize
=
input
[
0
];
//
size_t inputChannels = input[1];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
getFilterHeight
(
filter
);
...
...
@@ -134,6 +134,7 @@ public:
outputChannels
,
outputHeight
,
outputWidth
,
inputChannels
,
inputHeight
,
inputWidth
,
filterHeight
,
...
...
@@ -168,8 +169,6 @@ public:
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
check
(
inputs
,
outputs
);
// Since the implementation of Col2ImFunctor is ADD_TO,
// this function only supports ADD_TO mode.
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
...
...
@@ -228,12 +227,11 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
//
CHECK_EQ(numInputs_, inputs.size());
//
CHECK_EQ(numOutputs_, outputs.size());
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
check
(
inputs
,
outputs
);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
input
=
inputs
[
1
].
shape
();
// const TensorShape& multiplier = inputs[2].shape();
const
TensorShape
&
filter
=
outputs
[
0
].
shape
();
size_t
batchSize
=
input
[
0
];
...
...
paddle/function/DepthwiseConvOp.h
浏览文件 @
c43f6936
...
...
@@ -29,6 +29,7 @@ namespace paddle {
* \param[in] outputChannels channels of outputData.
* \param[in] outputHeight height of outputData.
* \param[in] outputWidth width of outputData.
* \param[in] inputChannels channels of inputData.
* \param[in] inputHeight height of inputData.
* \param[in] inputWidth width of inputData..
* \param[in] filterHeight height of filter.
...
...
@@ -49,8 +50,9 @@ public:
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
inputChannels
,
int
inputHeight
,
int
in
t
putWidth
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
paddle/function/DepthwiseConvOpGpu.cu
浏览文件 @
c43f6936
...
...
@@ -24,7 +24,7 @@ __global__
void
ConvolutionDepthwiseForward
(
const
int
nthreads
,
const
T
*
const
inputData
,
const
T
*
const
filterData
,
const
int
batchSize
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
outputWidth
,
const
int
inputChannels
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
outputData
)
{
...
...
@@ -39,36 +39,36 @@ void ConvolutionDepthwiseForward(const int nthreads,
const
int
w
=
index
%
outputWidth
;
const
T
*
weight
=
filterData
+
c
*
filterHeight
*
filterWidth
;
T
value
=
0
;
const
int
h_in_start
=
-
paddingH
+
h
*
strideH
;
const
int
w_in_start
=
-
paddingW
+
w
*
strideW
;
const
int
h_in_end
=
-
paddingH
+
h
*
strideH
+
filterHeight
-
1
;
const
int
w_in_end
=
-
paddingW
+
w
*
strideW
+
filterWidth
-
1
;
const
int
h_in_start
=
-
paddingH
+
h
*
strideH
;
const
int
w_in_start
=
-
paddingW
+
w
*
strideW
;
const
int
h_in_end
=
-
paddingH
+
h
*
strideH
+
filterHeight
-
1
;
const
int
w_in_end
=
-
paddingW
+
w
*
strideW
+
filterWidth
-
1
;
if
((
h_in_start
>=
0
)
&&
(
h_in_end
<
inputHeight
)
&&
(
w_in_start
>=
0
)
&&
(
w_in_end
<
inputWidth
))
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
const
int
offset
=
((
n
*
out
putChannels
+
c
)
*
inputHeight
+
h_in
)
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
const
int
offset
=
((
n
*
in
putChannels
+
c
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
++
weight
;
}
}
}
else
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
if
((
h_in
>=
0
)
&&
(
h_in
<
inputHeight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
inputWidth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
}
++
weight
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
++
weight
;
}
}
}
else
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
if
((
h_in
>=
0
)
&&
(
h_in
<
inputHeight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
inputWidth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
}
++
weight
;
}
}
}
outputData
[
index
]
=
value
;
}
...
...
@@ -80,15 +80,15 @@ __global__
void
ConvolutionDepthwiseInputBackward
(
const
int
nthreads
,
const
T
*
const
top_diff
,
const
T
*
const
weight_data
,
const
int
num
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
outputWidth
,
const
int
inputChannels
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
bottom_diff
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
n
=
index
/
out
putChannels
/
inputHeight
/
inputWidth
;
const
int
c
=
(
index
/
inputHeight
/
inputWidth
)
%
out
putChannels
;
const
int
n
=
index
/
in
putChannels
/
inputHeight
/
inputWidth
;
const
int
c
=
(
index
/
inputHeight
/
inputWidth
)
%
in
putChannels
;
const
int
h
=
(
index
/
inputWidth
)
%
inputHeight
;
const
int
w
=
index
%
inputWidth
;
const
T
*
weight
=
weight_data
+
c
*
filterHeight
*
filterWidth
;
...
...
@@ -100,7 +100,7 @@ void ConvolutionDepthwiseInputBackward(const int nthreads,
if
(((
h_out_s
%
strideH
)
==
0
)
&&
((
w_out_s
%
strideW
)
==
0
))
{
const
int
h_out
=
h_out_s
/
strideH
;
const
int
w_out
=
w_out_s
/
strideW
;
// TODO(zhaolong) : the 'if' affect the effectiveness, it needs to optimize
// TODO(zhaolong) : the 'if' affect the effectiveness, it needs to optimize
if
((
h_out
>=
0
)
&&
(
h_out
<
outputHeight
)
&&
(
w_out
>=
0
)
&&
(
w_out
<
outputWidth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
outputHeight
+
h_out
)
...
...
@@ -121,7 +121,7 @@ __global__
void
ConvolutionDepthwiseFilterBackward
(
const
int
num_i
,
const
int
nthreads
,
const
T
*
const
top_diff
,
const
T
*
const
inputData
,
const
int
num
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
outputWidth
,
const
int
input
Channels
,
const
int
input
Height
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
buffer_data
)
{
...
...
@@ -141,7 +141,7 @@ void ConvolutionDepthwiseFilterBackward(const int num_i, const int nthreads,
const
int
n
=
num_i
;
const
int
top_offset
=
((
n
*
outputChannels
+
c
)
*
outputHeight
+
h
)
*
outputWidth
+
w
;
const
int
bottom_offset
=
((
n
*
out
putChannels
+
c
)
*
inputHeight
+
h_in
)
const
int
bottom_offset
=
((
n
*
in
putChannels
+
c
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
buffer_data
[
index
]
=
top_diff
[
top_offset
]
*
inputData
[
bottom_offset
];
}
else
{
...
...
@@ -159,6 +159,7 @@ public:
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
...
...
@@ -186,6 +187,7 @@ public:
outputChannels
,
outputHeight
,
outputWidth
,
inputChannels
,
inputHeight
,
inputWidth
,
filterHeight
,
...
...
@@ -218,7 +220,7 @@ public:
int
paddingW
,
T
*
inputGrad
){
int
inputSize
=
batchSize
*
inputChannels
*
inputHeight
*
inputWidth
;
int
inputSize
=
batchSize
*
inputChannels
*
inputHeight
*
inputWidth
;
size_t
blocks
=
(
inputSize
+
1024
-
1
)
/
1024
;
size_t
blockX
=
512
;
...
...
@@ -237,6 +239,7 @@ public:
outputChannels
,
outputHeight
,
outputWidth
,
inputChannels
,
inputHeight
,
inputWidth
,
filterHeight
,
...
...
@@ -277,11 +280,11 @@ public:
size_t
blockY
=
(
blocks
+
512
-
1
)
/
512
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blockX
,
blockY
);
BaseMatrix
filterGradMatrix
(
inputChannels
*
filterHeight
*
filterWidth
,
1
,
filterGrad
,
false
,
true
);
BaseMatrix
filterGradMatrix
(
inputChannels
*
filterHeight
*
filterWidth
,
1
,
filterGrad
,
false
,
true
);
for
(
int
i
=
0
;
i
<
batchSize
;
i
++
)
{
ConvolutionDepthwiseFilterBackward
<
T
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
ConvolutionDepthwiseFilterBackward
<
T
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
i
,
colDataSize
,
outputGrad
,
...
...
@@ -290,6 +293,7 @@ public:
outputChannels
,
outputHeight
,
outputWidth
,
inputChannels
,
inputHeight
,
inputWidth
,
filterHeight
,
...
...
@@ -299,12 +303,12 @@ public:
paddingH
,
paddingW
,
colData
);
int
M
=
colDataSize
/
outputHeight
/
outputWidth
;
int
K
=
outputHeight
*
outputWidth
;
);
int
M
=
colDataSize
/
outputHeight
/
outputWidth
;
int
K
=
outputHeight
*
outputWidth
;
BaseMatrix
colMatrix
(
M
,
K
,
colData
,
false
,
true
);
filterGradMatrix
.
sumRows
(
colMatrix
,
(
T
)
1.0
,
(
T
)
1.0
);
filterGradMatrix
.
sumRows
(
colMatrix
,
(
T
)
1.0
,
(
T
)
1.0
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录