alexnet.py 11.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dangqingqing 已提交
15 16 17 18 19 20 21 22 23 24
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

25 26
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
27 28 29 30 31 32 33 34 35 36 37
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

38

D
dangqingqing 已提交
39 40
def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
    with tf.name_scope(name) as scope:
41 42 43 44 45
        kernel = tf.get_variable(
            name + '_w', [kH, kW, nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)
D
dangqingqing 已提交
46 47 48 49 50 51

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
52
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
53
        else:
54 55 56 57 58 59 60 61 62 63 64 65 66
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)

        biases = tf.get_variable(
            name=name + '_b',
            shape=[nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
D
dangqingqing 已提交
67 68 69
            dtype=tf.float32)

        bias = tf.reshape(
70 71
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
D
dangqingqing 已提交
72 73 74 75 76
            conv.get_shape())

        conv1 = tf.nn.relu(bias, name=scope)
        return conv1

77

D
dangqingqing 已提交
78 79
def _affine(name, inpOp, nIn, nOut, wd=0.0005, act=True, drop=None):
    with tf.name_scope(name) as scope:
80 81 82 83
        kernel = tf.get_variable(
            name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
D
dangqingqing 已提交
84 85 86 87 88 89
            dtype=tf.float32)

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

90 91 92 93 94 95
        biases = tf.get_variable(
            name + '_b', [nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
            dtype=tf.float32,
            trainable=True)
D
dangqingqing 已提交
96 97 98 99 100 101 102 103

        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        output = tf.nn.dropout(affine1, drop) if drop else affine1

        return output

104

D
dangqingqing 已提交
105 106
def _mpool(name, inpOp, kH, kW, dH, dW):
    if FLAGS.data_format == 'NCHW':
107 108
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
109
    else:
110 111 112 113 114 115 116 117 118 119
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding='VALID',
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
120 121

def _norm(name, l_input, lsize=4):
122 123 124
    return tf.nn.lrn(l_input,
                     lsize,
                     bias=1.0,
D
dangqingqing 已提交
125
                     alpha=0.001 / 9.0,
126 127
                     beta=0.75,
                     name=name)
D
dangqingqing 已提交
128 129 130 131 132


def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
133
        logits, labels, name='cross_entropy_per_example')
D
dangqingqing 已提交
134 135 136 137 138 139 140
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

141

D
dangqingqing 已提交
142 143 144 145 146 147 148 149 150
def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

151

D
dangqingqing 已提交
152
def inference(images):
153 154 155 156 157 158 159 160 161 162
    conv1 = _conv('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2)
    norm1 = _norm('norm1', pool1, lsize=5)
    conv2 = _conv('conv2', norm1, 96, 256, 5, 5, 1, 1, 'SAME')
    pool2 = _mpool('pool2', conv2, 3, 3, 2, 2)
    norm2 = _norm('norm2', pool2, lsize=5)
    conv3 = _conv('conv3', norm2, 256, 384, 3, 3, 1, 1, 'SAME')
    conv4 = _conv('conv4', conv3, 384, 384, 3, 3, 1, 1, 'SAME')
    conv5 = _conv('conv5', conv4, 384, 256, 3, 3, 1, 1, 'SAME')
    pool5 = _mpool('pool5', conv5, 3, 3, 2, 2)
D
dangqingqing 已提交
163 164 165
    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096, 0.5)
    affn2 = _affine('fc7', affn1, 4096, 4096, 0.5)
166
    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False)  # last fc
D
dangqingqing 已提交
167 168 169 170 171

    return affn3


def time_tensorflow_run(session, target, info_string):
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
194 195

def _add_loss_summaries(total_loss):
196
    """
D
dangqingqing 已提交
197 198 199 200 201 202 203 204
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
205 206 207 208
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])
D
dangqingqing 已提交
209

210 211 212 213 214 215 216
    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))
D
dangqingqing 已提交
217

218
    return loss_averages_op
D
dangqingqing 已提交
219 220 221


def run_benchmark():
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            # Generate some dummy images.
            image_size = 224
            # Note that our padding definition is slightly different the cuda-convnet.
            # In order to force the model to start with the same activations sizes,
            # we add 3 to the image_size and employ VALID padding above.
            if FLAGS.data_format == 'NCHW':
                image_shape = [
                    FLAGS.batch_size, 3, image_size + 3, image_size + 3
                ]
            else:
                image_shape = [
                    FLAGS.batch_size, image_size + 3, image_size + 3, 3
                ]
            images = tf.get_variable(
                'image',
                image_shape,
                initializer=tf.truncated_normal_initializer(
                    stddev=0.1, dtype=tf.float32),
                dtype=tf.float32,
                trainable=False)

            labels = tf.get_variable(
                'label', [FLAGS.batch_size],
                initializer=tf.constant_initializer(1),
                dtype=tf.int32,
                trainable=False)

            # Build a Graph that computes the logits predictions from the
            # inference model.
            last_layer = inference(images)

            objective = loss(last_layer, labels)
            # Compute the gradient with respect to all the parameters.

            # Compute gradients.
            # opt = tf.train.GradientDescentOptimizer(0.001)
            opt = tf.train.MomentumOptimizer(0.001, 0.9)
            grads = opt.compute_gradients(objective)
            global_step = tf.get_variable(
                'global_step', [],
                initializer=tf.constant_initializer(
                    0.0, dtype=tf.float32),
                trainable=False,
                dtype=tf.float32)
            apply_gradient_op = opt.apply_gradients(
                grads, global_step=global_step)

            # Track the moving averages of all trainable variables.
            variable_averages = tf.train.ExponentialMovingAverage(0.9,
                                                                  global_step)
            variables_averages_op = variable_averages.apply(
                tf.trainable_variables())

            # Build an initialization operation.
            init = tf.initialize_all_variables()

            # Start running operations on the Graph.
            sess = tf.Session(config=tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=FLAGS.log_device_placement))
            sess.run(init)

            run_forward = True
            run_forward_backward = True
            if FLAGS.forward_only and FLAGS.forward_backward_only:
                raise ValueError("Cannot specify --forward_only and "
                                 "--forward_backward_only at the same time.")
            if FLAGS.forward_only:
                run_forward_backward = False
            elif FLAGS.forward_backward_only:
                run_forward = False

            if run_forward:
                time_tensorflow_run(sess, last_layer, "Forward")

            if run_forward_backward:
                with tf.control_dependencies(
                    [apply_gradient_op, variables_averages_op]):
                    train_op = tf.no_op(name='train')
                time_tensorflow_run(sess, [train_op, objective],
                                    "Forward-backward")

D
dangqingqing 已提交
306 307

def main(_):
308
    run_benchmark()
D
dangqingqing 已提交
309 310 311


if __name__ == '__main__':
312
    tf.app.run()