alexnet.py 9.9 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_integer('batch_size', 128,
                            """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
    with tf.name_scope(name) as scope:
        kernel = tf.get_variable(name + '_w',[kH, kW, nIn, nOut],
          initializer=tf.truncated_normal_initializer(stddev=0.01, dtype=tf.float32),
          dtype=tf.float32)

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
          strides = [1, 1, dH, dW]
        else:
          strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(inpOp, kernel, strides, padding=padType,
                            data_format=FLAGS.data_format)

        biases = tf.get_variable(name=name + '_b', shape=[nOut], 
            initializer=tf.constant_initializer(value=0.0, dtype=tf.float32),
            dtype=tf.float32)

        bias = tf.reshape(
            tf.nn.bias_add(conv, biases, data_format=FLAGS.data_format),
            conv.get_shape())

        conv1 = tf.nn.relu(bias, name=scope)
        return conv1

def _affine(name, inpOp, nIn, nOut, wd=0.0005, act=True, drop=None):
    with tf.name_scope(name) as scope:
        kernel = tf.get_variable(name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        biases = tf.get_variable(name + '_b', [nOut],
            initializer=tf.constant_initializer(value=0.0, dtype=tf.float32),
            dtype=tf.float32,trainable=True)

        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        output = tf.nn.dropout(affine1, drop) if drop else affine1

        return output

def _mpool(name, inpOp, kH, kW, dH, dW):
    if FLAGS.data_format == 'NCHW':
      ksize = [1, 1, kH, kW]
      strides = [1, 1, dH, dW]
    else:
      ksize = [1, kH, kW, 1]
      strides = [1, dH, dW, 1]
    return tf.nn.max_pool(inpOp,
                          ksize=ksize,
                          strides=strides,
                          padding='VALID',
                          data_format=FLAGS.data_format,
                          name=name)

def _norm(name, l_input, lsize=4):
    return tf.nn.lrn(l_input, lsize, bias=1.0,
                     alpha=0.001 / 9.0,
                     beta=0.75, name=name)



def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                    logits, labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

def inference(images):
    conv1 = _conv ('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
    pool1 = _mpool('pool1', conv1,  3, 3, 2, 2)
    norm1 = _norm ('norm1', pool1, lsize=5)
    conv2 = _conv ('conv2', norm1,  96, 256, 5, 5, 1, 1, 'SAME')
    pool2 = _mpool('pool2', conv2,  3, 3, 2, 2)
    norm2 = _norm ('norm2', pool2, lsize=5)
    conv3 = _conv ('conv3', norm2,  256, 384, 3, 3, 1, 1, 'SAME')
    conv4 = _conv ('conv4', conv3,  384, 384, 3, 3, 1, 1, 'SAME')
    conv5 = _conv ('conv5', conv4,  384, 256, 3, 3, 1, 1, 'SAME')
    pool5 = _mpool('pool5', conv5,  3, 3, 2, 2)
    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096, 0.5)
    affn2 = _affine('fc7', affn1, 4096, 4096, 0.5)
    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False) # last fc

    return affn3


def time_tensorflow_run(session, target, info_string):
  num_steps_burn_in = 10
  total_duration = 0.0
  total_duration_squared = 0.0
  if not isinstance(target, list):
    target = [target]
  target_op = tf.group(*target)
  for i in xrange(FLAGS.num_batches + num_steps_burn_in):
    start_time = time.time()
    _ = session.run(target_op)
    duration = time.time() - start_time
    if i > num_steps_burn_in:
      if not i % 10:
        print ('%s: step %d, duration = %.3f' %
               (datetime.now(), i - num_steps_burn_in, duration))
      total_duration += duration
      total_duration_squared += duration * duration
  mn = total_duration / FLAGS.num_batches
  vr = total_duration_squared / FLAGS.num_batches - mn * mn
  sd = math.sqrt(vr)
  print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
         (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

def _add_loss_summaries(total_loss):
  """
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op



def run_benchmark():
  with tf.Graph().as_default():
    with tf.device('/gpu:0'):
      # Generate some dummy images.
      image_size = 224
      # Note that our padding definition is slightly different the cuda-convnet.
      # In order to force the model to start with the same activations sizes,
      # we add 3 to the image_size and employ VALID padding above.
      if FLAGS.data_format == 'NCHW':
        image_shape = [FLAGS.batch_size, 3, image_size + 3, image_size + 3]
      else:
        image_shape = [FLAGS.batch_size, image_size + 3, image_size + 3, 3]
      images = tf.get_variable('image', image_shape, 
                               initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32),
                               dtype=tf.float32,
                               trainable=False)

      labels = tf.get_variable('label', [FLAGS.batch_size],
                               initializer=tf.constant_initializer(1),
                               dtype=tf.int32,
                               trainable=False)

      # Build a Graph that computes the logits predictions from the
      # inference model.
      last_layer = inference(images)

      objective = loss(last_layer, labels)
      # Compute the gradient with respect to all the parameters.

      # Compute gradients.
      # opt = tf.train.GradientDescentOptimizer(0.001)
      opt = tf.train.MomentumOptimizer(0.001, 0.9)
      grads = opt.compute_gradients(objective) 
      global_step = tf.get_variable('global_step', [],
         initializer=tf.constant_initializer(0.0, dtype=tf.float32),
         trainable=False, dtype=tf.float32)
      apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

      # Track the moving averages of all trainable variables.
      variable_averages = tf.train.ExponentialMovingAverage(
           0.9, global_step)
      variables_averages_op = variable_averages.apply(tf.trainable_variables())

      # Build an initialization operation.
      init = tf.initialize_all_variables()

      # Start running operations on the Graph.
      sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
      sess.run(init)

      run_forward = True
      run_forward_backward = True
      if FLAGS.forward_only and FLAGS.forward_backward_only:
        raise ValueError("Cannot specify --forward_only and "
                         "--forward_backward_only at the same time.")
      if FLAGS.forward_only:
        run_forward_backward = False
      elif FLAGS.forward_backward_only:
        run_forward = False

      if run_forward:
        time_tensorflow_run(sess, last_layer, "Forward")

      if run_forward_backward:
        with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
            train_op = tf.no_op(name='train')
        time_tensorflow_run(sess, [train_op, objective], "Forward-backward")

def main(_):
  run_benchmark()


if __name__ == '__main__':
  tf.app.run()