alexnet.py 10.7 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

11 12
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
13 14 15 16 17 18 19 20 21 22 23
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

24

D
dangqingqing 已提交
25 26
def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
    with tf.name_scope(name) as scope:
27 28 29 30 31
        kernel = tf.get_variable(
            name + '_w', [kH, kW, nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)
D
dangqingqing 已提交
32 33 34 35 36 37

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
38
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
39
        else:
40 41 42 43 44 45 46 47 48 49 50 51 52
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)

        biases = tf.get_variable(
            name=name + '_b',
            shape=[nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
D
dangqingqing 已提交
53 54 55
            dtype=tf.float32)

        bias = tf.reshape(
56 57
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
D
dangqingqing 已提交
58 59 60 61 62
            conv.get_shape())

        conv1 = tf.nn.relu(bias, name=scope)
        return conv1

63

D
dangqingqing 已提交
64 65
def _affine(name, inpOp, nIn, nOut, wd=0.0005, act=True, drop=None):
    with tf.name_scope(name) as scope:
66 67 68 69
        kernel = tf.get_variable(
            name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
D
dangqingqing 已提交
70 71 72 73 74 75
            dtype=tf.float32)

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

76 77 78 79 80 81
        biases = tf.get_variable(
            name + '_b', [nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
            dtype=tf.float32,
            trainable=True)
D
dangqingqing 已提交
82 83 84 85 86 87 88 89

        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        output = tf.nn.dropout(affine1, drop) if drop else affine1

        return output

90

D
dangqingqing 已提交
91 92
def _mpool(name, inpOp, kH, kW, dH, dW):
    if FLAGS.data_format == 'NCHW':
93 94
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
95
    else:
96 97 98 99 100 101 102 103 104 105
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding='VALID',
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
106 107

def _norm(name, l_input, lsize=4):
108 109 110
    return tf.nn.lrn(l_input,
                     lsize,
                     bias=1.0,
D
dangqingqing 已提交
111
                     alpha=0.001 / 9.0,
112 113
                     beta=0.75,
                     name=name)
D
dangqingqing 已提交
114 115 116 117 118


def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
119
        logits, labels, name='cross_entropy_per_example')
D
dangqingqing 已提交
120 121 122 123 124 125 126
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

127

D
dangqingqing 已提交
128 129 130 131 132 133 134 135 136
def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

137

D
dangqingqing 已提交
138
def inference(images):
139 140 141 142 143 144 145 146 147 148
    conv1 = _conv('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2)
    norm1 = _norm('norm1', pool1, lsize=5)
    conv2 = _conv('conv2', norm1, 96, 256, 5, 5, 1, 1, 'SAME')
    pool2 = _mpool('pool2', conv2, 3, 3, 2, 2)
    norm2 = _norm('norm2', pool2, lsize=5)
    conv3 = _conv('conv3', norm2, 256, 384, 3, 3, 1, 1, 'SAME')
    conv4 = _conv('conv4', conv3, 384, 384, 3, 3, 1, 1, 'SAME')
    conv5 = _conv('conv5', conv4, 384, 256, 3, 3, 1, 1, 'SAME')
    pool5 = _mpool('pool5', conv5, 3, 3, 2, 2)
D
dangqingqing 已提交
149 150 151
    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096, 0.5)
    affn2 = _affine('fc7', affn1, 4096, 4096, 0.5)
152
    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False)  # last fc
D
dangqingqing 已提交
153 154 155 156 157

    return affn3


def time_tensorflow_run(session, target, info_string):
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
180 181

def _add_loss_summaries(total_loss):
182
    """
D
dangqingqing 已提交
183 184 185 186 187 188 189 190
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
191 192 193 194
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])
D
dangqingqing 已提交
195

196 197 198 199 200 201 202
    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))
D
dangqingqing 已提交
203

204
    return loss_averages_op
D
dangqingqing 已提交
205 206 207


def run_benchmark():
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            # Generate some dummy images.
            image_size = 224
            # Note that our padding definition is slightly different the cuda-convnet.
            # In order to force the model to start with the same activations sizes,
            # we add 3 to the image_size and employ VALID padding above.
            if FLAGS.data_format == 'NCHW':
                image_shape = [
                    FLAGS.batch_size, 3, image_size + 3, image_size + 3
                ]
            else:
                image_shape = [
                    FLAGS.batch_size, image_size + 3, image_size + 3, 3
                ]
            images = tf.get_variable(
                'image',
                image_shape,
                initializer=tf.truncated_normal_initializer(
                    stddev=0.1, dtype=tf.float32),
                dtype=tf.float32,
                trainable=False)

            labels = tf.get_variable(
                'label', [FLAGS.batch_size],
                initializer=tf.constant_initializer(1),
                dtype=tf.int32,
                trainable=False)

            # Build a Graph that computes the logits predictions from the
            # inference model.
            last_layer = inference(images)

            objective = loss(last_layer, labels)
            # Compute the gradient with respect to all the parameters.

            # Compute gradients.
            # opt = tf.train.GradientDescentOptimizer(0.001)
            opt = tf.train.MomentumOptimizer(0.001, 0.9)
            grads = opt.compute_gradients(objective)
            global_step = tf.get_variable(
                'global_step', [],
                initializer=tf.constant_initializer(
                    0.0, dtype=tf.float32),
                trainable=False,
                dtype=tf.float32)
            apply_gradient_op = opt.apply_gradients(
                grads, global_step=global_step)

            # Track the moving averages of all trainable variables.
            variable_averages = tf.train.ExponentialMovingAverage(0.9,
                                                                  global_step)
            variables_averages_op = variable_averages.apply(
                tf.trainable_variables())

            # Build an initialization operation.
            init = tf.initialize_all_variables()

            # Start running operations on the Graph.
            sess = tf.Session(config=tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=FLAGS.log_device_placement))
            sess.run(init)

            run_forward = True
            run_forward_backward = True
            if FLAGS.forward_only and FLAGS.forward_backward_only:
                raise ValueError("Cannot specify --forward_only and "
                                 "--forward_backward_only at the same time.")
            if FLAGS.forward_only:
                run_forward_backward = False
            elif FLAGS.forward_backward_only:
                run_forward = False

            if run_forward:
                time_tensorflow_run(sess, last_layer, "Forward")

            if run_forward_backward:
                with tf.control_dependencies(
                    [apply_gradient_op, variables_averages_op]):
                    train_op = tf.no_op(name='train')
                time_tensorflow_run(sess, [train_op, objective],
                                    "Forward-backward")

D
dangqingqing 已提交
292 293

def main(_):
294
    run_benchmark()
D
dangqingqing 已提交
295 296 297


if __name__ == '__main__':
298
    tf.app.run()