test_meshgrid_op.py 9.7 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

S
suytingwan 已提交
17
import numpy as np
姜永久 已提交
18
from eager_op_test import OpTest
19

S
suytingwan 已提交
20
import paddle
21
from paddle import fluid
S
suytingwan 已提交
22 23


姜永久 已提交
24 25 26 27
def meshgrid_wrapper(x):
    return paddle.tensor.meshgrid(x[0], x[1])


S
suytingwan 已提交
28 29 30
class TestMeshgridOp(OpTest):
    def setUp(self):
        self.op_type = "meshgrid"
31
        self.prim_op_type = "comp"
姜永久 已提交
32
        self.python_api = meshgrid_wrapper
33
        self.public_python_api = meshgrid_wrapper
S
suytingwan 已提交
34 35 36 37 38 39
        self.dtype = self.get_dtype()
        ins, outs = self.init_test_data()
        self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
        self.outputs = {
            'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
        }
姜永久 已提交
40
        self.python_out_sig = ['out0', 'out1']
41
        self.if_enable_cinn()
S
suytingwan 已提交
42 43 44 45 46

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
47
        self.check_output(check_prim=True)
S
suytingwan 已提交
48 49

    def test_check_grad(self):
50
        self.check_grad(['x0'], ['out0', 'out1'], check_prim=True)
S
suytingwan 已提交
51 52 53 54 55 56

    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
        for i in range(len(self.shape)):
57
            ins.append(np.random.random((self.shape[i],)).astype(self.dtype))
S
suytingwan 已提交
58 59 60 61 62 63 64 65 66 67 68

        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [100, 200]

69 70 71
    def if_enable_cinn(self):
        self.enable_cinn = True

S
suytingwan 已提交
72 73 74 75 76 77 78 79

class TestMeshgridOp2(TestMeshgridOp):
    def get_x_shape(self):
        return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
    def test_api(self):
80 81
        x = paddle.static.data(shape=[100], dtype='int32', name='x')
        y = paddle.static.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
82

83 84 85 86 87 88 89 90 91
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
92
            100,
93 94 95 96
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
97 98 99 100 101 102 103

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
104
        grid_x, grid_y = paddle.tensor.meshgrid(x, y)
105 106 107 108 109
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
S
suytingwan 已提交
110 111 112 113 114
        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp4(unittest.TestCase):
115
    def test_list_input(self):
116 117
        x = paddle.static.data(shape=[100], dtype='int32', name='x')
        y = paddle.static.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
118

119 120 121 122 123 124 125 126 127
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
128
            100,
129 130 131 132
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
133

134 135 136 137 138 139 140
        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid([x, y])
141 142 143 144 145
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
146 147 148

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)
S
suytingwan 已提交
149 150 151


class TestMeshgridOp5(unittest.TestCase):
152
    def test_tuple_input(self):
153 154
        x = paddle.static.data(shape=[100], dtype='int32', name='x')
        y = paddle.static.data(shape=[200], dtype='int32', name='y')
155

156 157 158 159 160 161 162 163 164
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
165
            100,
166 167 168 169
            [
                200,
            ],
        ).astype('int32')
170 171 172 173 174 175 176 177

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid((x, y))
178 179 180 181 182
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
183 184 185 186 187 188

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp6(unittest.TestCase):
S
suytingwan 已提交
189
    def test_api_with_dygraph(self):
190 191 192 193 194 195 196 197 198
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
199
            100,
200 201 202 203
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
204

205 206 207 208 209 210 211 212 213 214 215
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


class TestMeshgridOp7(unittest.TestCase):
    def test_api_with_dygraph_list_input(self):
216 217 218 219 220 221 222 223 224
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
225
            100,
226 227 228 229
            [
                200,
            ],
        ).astype('int32')
230

S
suytingwan 已提交
231 232 233 234 235 236 237 238 239
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4])

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


Z
zhangchunle 已提交
240
class TestMeshgridOp8(unittest.TestCase):
241
    def test_api_with_dygraph_tuple_input(self):
242 243 244 245 246 247 248 249 250
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
251
            100,
252 253 254 255
            [
                200,
            ],
        ).astype('int32')
256 257 258 259 260 261 262 263 264

        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
265

266 267 268 269 270
class TestMeshGrid_ZeroDim(TestMeshgridOp):
    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
271
        ins.append(np.random.random([]).astype(self.dtype))
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        ins.append(np.random.random([2]).astype(self.dtype))
        ins.append(np.random.random([3]).astype(self.dtype))
        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [1, 2, 3]

    def if_enable_cinn(self):
        self.enable_cinn = False


Y
YuanRisheng 已提交
288
class TestMeshgridEager(unittest.TestCase):
289
    def test_dygraph_api(self):
290 291 292 293 294 295 296 297 298
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
299
            100,
300 301 302 303
            [
                200,
            ],
        ).astype('int32')
Y
YuanRisheng 已提交
304 305 306 307 308 309 310 311 312

        with fluid.dygraph.guard():
            tensor_1 = fluid.dygraph.to_variable(input_1)
            tensor_2 = fluid.dygraph.to_variable(input_2)
            tensor_1.stop_gradient = False
            tensor_2.stop_gradient = False
            res_1, res_2 = paddle.tensor.meshgrid((tensor_1, tensor_2))
            sum = paddle.add_n([res_1, res_2])
            sum.backward()
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
            tensor_eager_1 = fluid.dygraph.to_variable(input_1)
            tensor_eager_2 = fluid.dygraph.to_variable(input_2)
            tensor_eager_1.stop_gradient = False
            tensor_eager_2.stop_gradient = False
            res_eager_1, res_eager_2 = paddle.tensor.meshgrid(
                (tensor_eager_1, tensor_eager_2)
            )
            sum_eager = paddle.add_n([res_eager_1, res_eager_2])
            sum_eager.backward()
            self.assertEqual(
                (tensor_1.grad.numpy() == tensor_eager_1.grad.numpy()).all(),
                True,
            )
            self.assertEqual(
                (tensor_2.grad.numpy() == tensor_eager_2.grad.numpy()).all(),
                True,
            )
Y
YuanRisheng 已提交
330

331

S
suytingwan 已提交
332
if __name__ == '__main__':
H
hong 已提交
333
    paddle.enable_static()
S
suytingwan 已提交
334
    unittest.main()