test_meshgrid_op.py 9.2 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

S
suytingwan 已提交
17
import numpy as np
18
from op_test import OpTest
19

S
suytingwan 已提交
20
import paddle
21
import paddle.fluid as fluid
Y
YuanRisheng 已提交
22
from paddle.fluid.framework import _test_eager_guard
S
suytingwan 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


class TestMeshgridOp(OpTest):
    def setUp(self):
        self.op_type = "meshgrid"
        self.dtype = self.get_dtype()
        ins, outs = self.init_test_data()
        self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
        self.outputs = {
            'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
        }

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], ['out0'])
        self.check_grad(['x1'], ['out1'])

    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
        for i in range(len(self.shape)):
50
            ins.append(np.random.random((self.shape[i],)).astype(self.dtype))
S
suytingwan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [100, 200]


class TestMeshgridOp2(TestMeshgridOp):
    def get_x_shape(self):
        return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
    def test_api(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

73 74 75 76 77 78 79 80 81
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
82
            100,
83 84 85 86
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
87 88 89 90 91 92 93

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
94
        grid_x, grid_y = paddle.tensor.meshgrid(x, y)
95 96 97 98 99
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
S
suytingwan 已提交
100 101 102 103 104
        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp4(unittest.TestCase):
105 106 107
    def test_list_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
108

109 110 111 112 113 114 115 116 117
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
118
            100,
119 120 121 122
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
123

124 125 126 127 128 129 130
        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid([x, y])
131 132 133 134 135
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
136 137 138

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)
S
suytingwan 已提交
139 140 141


class TestMeshgridOp5(unittest.TestCase):
142 143 144 145
    def test_tuple_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

146 147 148 149 150 151 152 153 154
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
155
            100,
156 157 158 159
            [
                200,
            ],
        ).astype('int32')
160 161 162 163 164 165 166 167

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid((x, y))
168 169 170 171 172
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
173 174 175 176 177 178

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp6(unittest.TestCase):
S
suytingwan 已提交
179
    def test_api_with_dygraph(self):
180 181 182 183 184 185 186 187 188
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
189
            100,
190 191 192 193
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
194

195 196 197 198 199 200 201 202
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
203 204 205 206
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph()

207 208 209

class TestMeshgridOp7(unittest.TestCase):
    def test_api_with_dygraph_list_input(self):
210 211 212 213 214 215 216 217 218
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
219
            100,
220 221 222 223
            [
                200,
            ],
        ).astype('int32')
224

S
suytingwan 已提交
225 226 227 228 229 230 231 232
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4])

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
233 234 235 236
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph_list_input()

S
suytingwan 已提交
237

Z
zhangchunle 已提交
238
class TestMeshgridOp8(unittest.TestCase):
239
    def test_api_with_dygraph_tuple_input(self):
240 241 242 243 244 245 246 247 248
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
249
            100,
250 251 252 253
            [
                200,
            ],
        ).astype('int32')
254 255 256 257 258 259 260 261 262

        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
263 264 265 266 267 268
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph_tuple_input()


class TestMeshgridEager(unittest.TestCase):
269
    def test_dygraph_api(self):
270 271 272 273 274 275 276 277 278
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
279
            100,
280 281 282 283
            [
                200,
            ],
        ).astype('int32')
Y
YuanRisheng 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

        with fluid.dygraph.guard():
            tensor_1 = fluid.dygraph.to_variable(input_1)
            tensor_2 = fluid.dygraph.to_variable(input_2)
            tensor_1.stop_gradient = False
            tensor_2.stop_gradient = False
            res_1, res_2 = paddle.tensor.meshgrid((tensor_1, tensor_2))
            sum = paddle.add_n([res_1, res_2])
            sum.backward()
            with _test_eager_guard():
                tensor_eager_1 = fluid.dygraph.to_variable(input_1)
                tensor_eager_2 = fluid.dygraph.to_variable(input_2)
                tensor_eager_1.stop_gradient = False
                tensor_eager_2.stop_gradient = False
                res_eager_1, res_eager_2 = paddle.tensor.meshgrid(
299 300
                    (tensor_eager_1, tensor_eager_2)
                )
Y
YuanRisheng 已提交
301 302
                sum_eager = paddle.add_n([res_eager_1, res_eager_2])
                sum_eager.backward()
303 304 305 306 307 308 309 310 311 312 313 314
                self.assertEqual(
                    (
                        tensor_1.grad.numpy() == tensor_eager_1.grad.numpy()
                    ).all(),
                    True,
                )
                self.assertEqual(
                    (
                        tensor_2.grad.numpy() == tensor_eager_2.grad.numpy()
                    ).all(),
                    True,
                )
Y
YuanRisheng 已提交
315

316

S
suytingwan 已提交
317
if __name__ == '__main__':
H
hong 已提交
318
    paddle.enable_static()
S
suytingwan 已提交
319
    unittest.main()