test_meshgrid_op.py 8.4 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
import paddle.fluid as fluid
import paddle
from paddle.fluid import compiler, Program, program_guard, core
Y
YuanRisheng 已提交
23
from paddle.fluid.framework import _test_eager_guard
S
suytingwan 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82


class TestMeshgridOp(OpTest):
    def setUp(self):
        self.op_type = "meshgrid"
        self.dtype = self.get_dtype()
        ins, outs = self.init_test_data()
        self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
        self.outputs = {
            'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
        }

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], ['out0'])
        self.check_grad(['x1'], ['out1'])

    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
        for i in range(len(self.shape)):
            ins.append(np.random.random((self.shape[i], )).astype(self.dtype))

        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [100, 200]


class TestMeshgridOp2(TestMeshgridOp):
    def get_x_shape(self):
        return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
    def test_api(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
83
        grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
84 85 86 87 88 89 90 91 92
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={'x': input_1,
                                     'y': input_2},
                               fetch_list=[grid_x, grid_y])
        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp4(unittest.TestCase):
93 94 95
    def test_list_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
96

97 98
        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')
S
suytingwan 已提交
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113
        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid([x, y])
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={'x': input_1,
                                     'y': input_2},
                               fetch_list=[grid_x, grid_y])

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)
S
suytingwan 已提交
114 115 116


class TestMeshgridOp5(unittest.TestCase):
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def test_tuple_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid((x, y))
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={'x': input_1,
                                     'y': input_2},
                               fetch_list=[grid_x, grid_y])

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp6(unittest.TestCase):
S
suytingwan 已提交
141 142 143 144
    def test_api_with_dygraph(self):
        input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

145 146 147 148 149 150 151 152
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
153 154 155 156
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph()

157 158 159 160 161 162

class TestMeshgridOp7(unittest.TestCase):
    def test_api_with_dygraph_list_input(self):
        input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

S
suytingwan 已提交
163 164 165 166 167 168 169 170
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4])

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
171 172 173 174
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph_list_input()

S
suytingwan 已提交
175

Z
zhangchunle 已提交
176
class TestMeshgridOp8(unittest.TestCase):
177 178 179 180 181 182 183 184 185 186 187 188
    def test_api_with_dygraph_tuple_input(self):
        input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph_tuple_input()


class TestMeshgridEager(unittest.TestCase):
    def test_dygraph_final_state_api(self):
        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

        with fluid.dygraph.guard():
            tensor_1 = fluid.dygraph.to_variable(input_1)
            tensor_2 = fluid.dygraph.to_variable(input_2)
            tensor_1.stop_gradient = False
            tensor_2.stop_gradient = False
            res_1, res_2 = paddle.tensor.meshgrid((tensor_1, tensor_2))
            sum = paddle.add_n([res_1, res_2])
            sum.backward()
            with _test_eager_guard():
                tensor_eager_1 = fluid.dygraph.to_variable(input_1)
                tensor_eager_2 = fluid.dygraph.to_variable(input_2)
                tensor_eager_1.stop_gradient = False
                tensor_eager_2.stop_gradient = False
                res_eager_1, res_eager_2 = paddle.tensor.meshgrid(
                    (tensor_eager_1, tensor_eager_2))
                sum_eager = paddle.add_n([res_eager_1, res_eager_2])
                sum_eager.backward()
                self.assertEqual((
                    tensor_1.grad.numpy() == tensor_eager_1.grad.numpy()).all(),
                                 True)
                self.assertEqual((
                    tensor_2.grad.numpy() == tensor_eager_2.grad.numpy()).all(),
                                 True)

223

S
suytingwan 已提交
224
if __name__ == '__main__':
H
hong 已提交
225
    paddle.enable_static()
S
suytingwan 已提交
226
    unittest.main()