Matrix.h 55.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17
#include <stdint.h>
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25
#include <memory>
#include <thread>

#include "paddle/utils/Logging.h"
#include "paddle/utils/ThreadLocal.h"

#include <hl_gpu.h>

Y
Yu Yang 已提交
26
#include "BaseMatrix.h"
Z
zhangjinchao01 已提交
27 28
#include "MemoryHandle.h"
#include "Vector.h"
L
liaogang 已提交
29
#include "paddle/utils/Common.h"
Z
zhangjinchao01 已提交
30 31 32 33
#include "paddle/utils/ThreadLocal.h"

namespace paddle {

34
/// TODO(tianbing), move to paddle/function/TensorType.h
Z
zhangjinchao01 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
enum SparseValueType { NO_VALUE = 0, FLOAT_VALUE = 1 };

/**
 * @brief  matrix sparse_format .
 *
 * nnz represents nonzero number in sparse matrix.
 *
 * SPARSE_CSR: row major matrix. length of row is height_ + 1, each element
 * represents row start index in Matrix. length of col and value are nnz.
 *
 * SPARSE_CSC: col major matrix. length of col is width_ + 1, each element
 * represents col start index in Matrix. length of col and value are nnz.
 *
 * @code
 * for example: [0, 1, 0, 2, 0;
 *               1, 0, 0, 0, 0;
 *               0, 0, 0, 2, 5];
 * SPARSE_CSR row   [0, 2, 3, 5];
 *            col   [1, 3, 0, 3, 4];
 *            value [1, 2, 1, 2, 5]
 * SPARSE_CSC col   [0, 1, 2, 2, 4, 5];
 *            row   [1, 0, 0, 2, 2];
 *            value [1, 1, 2, 2, 5]
 * @endcode
 */
60
/// TODO(tianbing), move to paddle/function/TensorType.h
Z
zhangjinchao01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
enum SparseFormat { SPARSE_CSR = 0, SPARSE_CSC = 1 };

class Matrix;
class GpuMatrix;
class CpuMatrix;
class CpuSparseMatrix;
class GpuSparseMatrix;
typedef std::shared_ptr<Matrix> MatrixPtr;
typedef std::shared_ptr<GpuMatrix> GpuMatrixPtr;
typedef std::shared_ptr<CpuMatrix> CpuMatrixPtr;
typedef std::shared_ptr<GpuSparseMatrix> GpuSparseMatrixPtr;
typedef std::shared_ptr<CpuSparseMatrix> CpuSparseMatrixPtr;

/**
 * Copy or assignemnt constructor will share the data as opposed to making a
 * copy of the original data. To make a copy of the orinal data, use copyFrom()
 * instead.
 */
class Matrix : public BaseMatrix {
protected:
81 82 83 84
  Matrix(MemoryHandlePtr memHandle,
         size_t height,
         size_t width,
         bool trans,
Z
zhangjinchao01 已提交
85 86 87 88
         bool use_gpu);

  Matrix(real* data, size_t height, size_t width, bool trans, bool use_gpu);

89 90 91 92 93
  Matrix(real* data,
         size_t height,
         size_t width,
         size_t stride,
         bool trans,
Z
zhangjinchao01 已提交
94 95 96 97 98 99 100 101 102 103 104
         bool use_gpu);

  static ThreadLocal<MatrixPtr> tmpMat_;

public:
  size_t elementCnt_;  // maximal number of elements which can be held in data_
  MemoryHandlePtr memoryHandle_;

public:
  virtual ~Matrix() {}

105 106 107 108 109 110 111 112 113 114 115 116
  static MatrixPtr create(MemoryHandlePtr memHandle,
                          size_t height,
                          size_t width,
                          bool trans = false);
  static MatrixPtr create(size_t height,
                          size_t width,
                          bool trans = false,
                          bool useGpu = false);
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          bool trans = false,
Z
zhangjinchao01 已提交
117
                          bool useGpu = false);
118 119 120 121 122
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          size_t stride,
                          bool trans = false,
Z
zhangjinchao01 已提交
123 124
                          bool useGpu = false);

125 126 127
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
Z
zhangjinchao01 已提交
128
                                      SparseValueType valueType = FLOAT_VALUE,
129 130 131 132 133
                                      bool trans = false,
                                      bool useGpu = false);
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
Z
zhangjinchao01 已提交
134 135
                                      SparseValueType valueType = FLOAT_VALUE,
                                      SparseFormat foramt = SPARSE_CSR,
136 137 138 139 140 141 142 143
                                      bool trans = false,
                                      bool useGpu = false);

  static MatrixPtr createSparseMatrix(real* data,
                                      int* row,
                                      int* col,
                                      size_t height,
                                      size_t width,
Z
zhangjinchao01 已提交
144 145
                                      size_t nnz, /* used to allocate space */
                                      SparseValueType valueType, /*value type*/
146 147
                                      SparseFormat format,
                                      bool trans,
Z
zhangjinchao01 已提交
148 149 150
                                      bool useGpu);

  static void resizeOrCreateSparseMatrix(
151 152 153 154 155 156 157 158 159 160 161 162 163 164
      MatrixPtr& matrix,
      size_t height,
      size_t width,
      size_t nnz,
      SparseValueType valueType = FLOAT_VALUE,
      SparseFormat foramt = SPARSE_CSR,
      bool trans = false,
      bool useGpu = false);

  static void resizeOrCreate(MatrixPtr& a,
                             size_t height,
                             size_t width,
                             bool trans = false,
                             bool useGpu = false);
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

  /**
   * @brief  set the data buffer used to hold the matrix data.
   *
   * caller should make sure that the size of data is at least
   * sizeof(real)*height*width.
   */
  void setData(real* data) {
    BaseMatrix::setData(data);
    memoryHandle_.reset();
  }

  /// the data should be contiguous
  void setData(real* data, size_t newHeight, size_t newWidth) {
    setData(data);
    height_ = newHeight;
    width_ = newWidth;
    elementCnt_ = newHeight * newWidth;
    stride_ = width_;
  }

  size_t getWidth() const { return width_; }
  size_t getHeight() const { return height_; }
  size_t getStride() const { return stride_; }
  size_t getElementCnt() const { return elementCnt_; }
  virtual real* getData() { return data_; }
  virtual const real* getData() const { return data_; }
  bool isTransposed() const { return trans_; }
  bool isContiguous() const { return stride_ == width_ || height_ == 1; }

  // If sparse matrix, need to dynamic_cast to CpuSparseMatrix/GpuSparseMatrix
  // befor call the following functions.
  // Declare these functions in the base class just easy to call them.
  // And these declarations should be moved to base class of sparse matrix
  // if refactor sparse matrix
  virtual int* getRows() const {
    LOG(FATAL) << "Not implemented";
202
    return nullptr;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
203 204 205 206
  }

  virtual int* getCols() const {
    LOG(FATAL) << "Not implemented";
207
    return nullptr;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
208 209 210 211 212 213 214 215 216
  }

  virtual SparseFormat getFormat() const {
    LOG(FATAL) << "Not implemented";
    return SPARSE_CSR;  //! suppress warning for no return value.
  }

  virtual SparseValueType getValueType() const {
    LOG(FATAL) << "Not implemented";
217
    return NO_VALUE;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  }

  /**
   * @brief matrix elment-wise add
   *
   * Named add3 just because add/add2 has been used in BaseMatrix.cu
   * and they are not virtual function.
   */
  virtual void add3(MatrixPtr b) { LOG(FATAL) << "Not implemented"; }

  MemoryHandlePtr getMemoryHandle() const { return memoryHandle_; }

  virtual void zeroMem() { LOG(FATAL) << "Not implemented"; }

  virtual void resetOne() { LOG(FATAL) << "Not implemented"; }

234
  void setDiag(real value);
235

Z
zhangjinchao01 已提交
236 237 238 239 240 241 242 243 244 245 246
  virtual void copyFrom(const Matrix& src) { LOG(FATAL) << "Not implemented"; }

  virtual void trimFrom(const CpuSparseMatrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  // asynchronous copy
  virtual void copyFrom(const Matrix& src, hl_stream_t stream) {
    LOG(FATAL) << "Not implemented";
  }

247 248 249
  MatrixPtr subMatrix(size_t startRow,
                      size_t endRow,
                      size_t startCol,
Z
zhangjinchao01 已提交
250 251 252 253 254 255 256 257 258 259 260 261
                      size_t endCol);

  MatrixPtr subRowMatrix(size_t startRow, size_t endRow) {
    return subMatrix(startRow, endRow, 0, getWidth());
  }

  MatrixPtr subColMatrix(size_t startCol, size_t endCol) {
    return subMatrix(0, getHeight(), startCol, endCol);
  }

  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows) {
    CHECK_LE(startRow + numRows, getHeight());
262 263 264 265 266
    return Matrix::create(getData() + startRow * getWidth(),
                          numRows,
                          getWidth(),
                          trans_,
                          useGpu_);
Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  }
  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows, MatrixPtr dest) {
    CHECK_LE(startRow + numRows, getHeight());
    CHECK_EQ(useGpu_, dest->useGpu_);
    dest->setData(this->rowBuf(startRow), numRows, getWidth());
    return dest;
  }

  /**
   * If this is GpuMatrix, src is assumed to be CPU memory
   *
   * If this is CpuMatrix, src is assumed to be CPU memory
   */
  virtual void copyFrom(const real* src, size_t size) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void copyFrom(const real* src, const int64_t* seq) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief convert a int vector to a real matrix.
   *
   * (1) source and dest are both in CPU.
   *
   * (2) sizes are exactly match.
   */
  virtual void copyFrom(const IVector& src) {
    LOG(FATAL) << "copy data from int vector only available on CpuMatrix.";
  }

299
  virtual void copyByRowIndex(Matrix& b, const IVector& rowIndex) {
Z
zhangjinchao01 已提交
300 301 302 303 304 305 306 307 308 309 310
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief Create a matrix with the same type (GpuMatrix, CpuMatrix,
   *        NonValueSparseMatrix, etc.) as this.
   *
   * If height and width is zero, the new matrix will have the same size
   * as this, otherwise the new matrix will have the specified size.
   *
   */
311 312
  virtual MatrixPtr clone(size_t height = 0,
                          size_t width = 0,
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                          bool useGpu = false) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real* getRowBuf(size_t row) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real getElement(size_t x, size_t y) const {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual real getSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void accumulateColSum(Matrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  virtual real getAbsSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  /**
   * @note Original data may not be preserved after resize().
   */
  virtual void resize(size_t newHeight, size_t newWidth) = 0;

  /**
   * @note This should only be used for sparse matrix.
   */
350 351
  virtual void resize(size_t newHeight,
                      size_t newWidth,
Z
zhangjinchao01 已提交
352
                      size_t newNnz, /* total item used to allocate space */
353 354
                      SparseValueType valueType,
                      SparseFormat format) = 0;
Z
zhangjinchao01 已提交
355 356 357 358 359 360 361

  /**
   * @brief This should only be used for sparse matrix.
   *
   * Currently must be called for each row in order.
   * The matrix is not valid until setRow is called for the last row.
   */
362 363 364
  virtual void setRow(size_t row,
                      size_t colNum,
                      const unsigned int* cols,
Z
zhangjinchao01 已提交
365 366 367 368 369 370 371 372 373 374
                      const real* values) = 0;

  virtual MatrixPtr getTranspose() = 0;

  /**
   * @brief  hard transpose.
   *
   * allocate matTrans' memory outside, then set memAlloc as false;
   * else set as true.
   */
375 376 377 378 379
  virtual void transpose(MatrixPtr& matTrans, bool memAlloc) {
    LOG(FATAL) << "Not implemented";
  }

  /**
H
Haonan 已提交
380 381 382 383 384 385 386 387 388 389 390
   * @brief  rotate 90 degrees in clock-wise if clockWise=true;
   *         otherwise rotate in anti clock-wise
   * clock-wise:
   * \f[
   *   y(j,i) = x(M-i-1,j)
   * \f]
   * anti clock-wise:
   * \f[
   *   y(j,i) = x(i, N-1-j)
   * \f]
   * where \f$x\f$ is (M x N) input, and \f$y\f$ is (N x M) output.
391
   *
H
Haonan 已提交
392
   * allocate matRot' memory outside, then set memAlloc as false;
393 394 395
   * else set as true.
   */
  virtual void rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise) {
Z
zhangjinchao01 已提交
396 397 398
    LOG(FATAL) << "Not implemented";
  }

L
lzhao4ever 已提交
399 400
  virtual MatrixPtr getInverse() {
    LOG(FATAL) << "Not implemented";
401
    return nullptr;
L
lzhao4ever 已提交
402 403 404 405 406 407 408 409
  }

  /**
   * @brief  inverse.
   *
   * if allocate matInv's memory outside, then set memAlloc as false;
   * else set as true.
   */
410
  virtual void inverse(MatrixPtr& matInv, bool memAlloc) {
L
lzhao4ever 已提交
411 412 413
    LOG(FATAL) << "Not implemented";
  }

Z
zhangjinchao01 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
public:
  /// Only set all variables to 0 or NULL but not free them.
  virtual void clear() {
    height_ = 0;
    width_ = 0;
    data_ = NULL;
  }

  void reshape(size_t height, size_t width);

  /// add b to each sample of this.
  virtual void addBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

429 430 431 432
  virtual void addSharedBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

H
hedaoyuan 已提交
433
  void addBias(Matrix& b, real scale, bool sharedBias) {
434 435 436 437 438 439 440
    if (!sharedBias) {
      addBias(b, scale);
    } else {
      addSharedBias(b, scale);
    }
  }

Z
zhangjinchao01 已提交
441 442 443 444 445
  /// add each sample from a to this.
  virtual void collectBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

446 447 448 449
  virtual void collectSharedBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

H
hedaoyuan 已提交
450
  void collectBias(Matrix& a, real scale, bool sharedBias) {
451 452 453 454 455 456 457
    if (!sharedBias) {
      collectBias(a, scale);
    } else {
      collectSharedBias(a, scale);
    }
  }

458 459 460
  virtual void sequenceAvgForward(Matrix& a,
                                  const IVector& startsPos,
                                  int mode) {
Z
zhangjinchao01 已提交
461 462 463 464 465 466 467 468
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
469 470
  virtual void mul(const Matrix& a,
                   const Matrix& b,
471
                   real scaleAB,
Z
zhangjinchao01 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                   real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /// Add a vector (column) b to matrix a, column by column.
  virtual void addColumnVector(const Matrix& b) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += vec(index(i, j), 0)
   * where index(i, j) = ((codes(i) + numClasses) >> (j + 1)) - 1
   * @endcode
   */
488 489
  virtual void addByBitCode(size_t numClasses,
                            const IVector& codes,
Z
zhangjinchao01 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503
                            const Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   vec(index(i, j), 0) += this(i, j)
   * where index is same as the index for addByBitCode
   * @endcode
   */
504 505
  virtual void addByBitCodeBackward(size_t numClasses,
                                    const IVector& codes,
Z
zhangjinchao01 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519
                                    Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += <mat.row(index(i, j)), input.row(i)>
   * where index is same as the index for addByBitCode
   * @endcode
   */
520 521 522 523
  virtual void mulByBitCode(size_t numClasses,
                            const IVector& codes,
                            const Matrix& mat,
                            const Matrix& input) {
Z
zhangjinchao01 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   mat.row(index(i, j)) += this(i, j) * input.row(i)
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardWeight(size_t numClasses,
539 540
                                          const IVector& codes,
                                          Matrix& mat,
Z
zhangjinchao01 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
                                          const Matrix& input) {
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   input.row(i) += this(i, j) * mat.row(index(i, j))
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardError(size_t numClasses,
                                         const IVector& codes,
558 559
                                         const Matrix& mat,
                                         Matrix& input) {
Z
zhangjinchao01 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *   sum(i, 0) = scaleSum * \sum_j  bit(i, j) * this(i, j)
   * where bit(i, j) = ((codes(i) + numClasses) & 2^j) ? 1 : 0
   * @endcode
   */
574 575 576
  virtual void sumByBitCode(size_t numClasses,
                            IVector& codes,
                            Matrix& sum,
Z
zhangjinchao01 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                            real scaleSum) {
    (void)numClasses;
    (void)codes;
    (void)sum;
    (void)scaleSum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *  this(i, j) -= bit(i, j)
   * where bit(i, j) is same as that for sumByBitCode
   * @endcode
   */
  virtual void subByBitCode(size_t numClasses_, IVector& codes) {
    (void)numClasses_;
    (void)codes;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * add the sum of each row of this to mat
   */
  virtual void rowSum(Matrix& sum) {
    (void)sum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * set the max of each row of this to mat
   */
  virtual void rowMax(Matrix& max) {
    (void)max;
    LOG(FATAL) << "Not implemeted";
  }

614 615 616
  /**
   * set the max of each column of this to mat
   */
Z
zhangjinchao01 已提交
617 618
  virtual void colMax(Matrix& max) { LOG(FATAL) << "not implemented"; }

619 620 621 622 623 624 625 626 627 628 629
  /**
   * @brief Get the top k elements of each column of this matrix.
   *
   * The row ids and values of these elements are stored in
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
   */
  virtual void colMax(IVector& maxIds, Matrix& maxVal) {
    LOG(FATAL) << "not implemented";
  }

630 631 632
  virtual void maxoutForward(Matrix& a,
                             IVector& id,
                             size_t channels,
633 634 635 636
                             size_t groups) {
    LOG(FATAL) << "not implemented";
  }

637 638 639
  virtual void maxoutBackward(Matrix& a,
                              IVector& id,
                              size_t channels,
640 641 642 643
                              size_t groups) {
    LOG(FATAL) << "not implemented";
  }

Z
zhangjinchao01 已提交
644 645 646 647 648 649
  virtual void rowMaxId(IVector& maxIds) { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief Get the top k elements of each row of this matrix.
   *
   * The column ids and values of these elements are stored in
650 651
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
Z
zhangjinchao01 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
   */
  virtual void rowMax(IVector& maxIds, Matrix& max) {
    LOG(FATAL) << "Not implemented";
  }

  /// normalize each row so that the sum of each row is 1.
  virtual void rowNormalizeL1(Matrix& out) {
    (void)out;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   *  this = a*b
   * @endcode
   */
668
  virtual void mul(const Matrix& a, const Matrix& b) {
Z
zhangjinchao01 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  virtual void rightMul(Matrix& b, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = this* b
   * @endcode
   */
  virtual void rightMul(Matrix& b) { LOG(FATAL) << "Not implemented"; }

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  virtual void leftMul(Matrix& a, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = a*this)
   * @endcode
   */
  virtual void leftMul(Matrix& a) { LOG(FATAL) << "Not implemented"; }

  /// merge the element for each col.
  virtual void colMerge(Matrix& src) { LOG(FATAL) << "Not implemented"; }

  /// copy -log(output[label]) to this->data[i].
  virtual void oneHotCrossEntropy(Matrix& output, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyBp(Matrix& outputV, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// copy -log(output[label]) to this->data[i].
718 719
  virtual void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                              IVector& label,
Z
zhangjinchao01 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
                                              real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                                IVector& label,
                                                real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * \f[
   *  a[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} b_{i+j} * c_{j}
   * \f]
735
   *
Z
zhangjinchao01 已提交
736 737 738 739 740 741 742 743 744
   * b contains M elements,
   * c contains N elements (N is odd),
   * b's index arithmetic is computed modulo M,
   * c's index arithmetic is computed modulo N.
   */
  virtual void circularConv(Matrix& b, Matrix& c) {
    LOG(FATAL) << "Not implemented";
  }

745 746 747 748
  virtual void circularConvDerivative(Matrix& output,
                                      Matrix& prevOut1,
                                      Matrix& prevOut2,
                                      Matrix& prevGrad1,
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                                      Matrix& prevGrad2) {
    LOG(FATAL) << "Not implemented";
  }

  /* output_ij = exp(this_{ij}) / (sum_j exp(this_ij)) */
  virtual void softmax(Matrix& output) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }
  virtual void sequenceSoftmax(Matrix& output, const IVector& index) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }

  virtual void softmaxBackward(Matrix& outputV) {
    (void)outputV;
    LOG(FATAL) << "Not implemeted";
  }

  /*
    sum_i = sum_j this_ij * output_ij
    this_ij = output_ij* (this_ij - sum_i)
  */
  virtual void softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the sum of squares diff cost.
  virtual void sumOfSquares(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// gradient of sumOfSquares.
  virtual void sumOfSquaresBp(Matrix& outputV, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void tanh(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void tanhDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void softrelu(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void softreluDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void scaledTanh(Matrix& output, real p1, real p2) {
    LOG(FATAL) << "Not implemented";
  }

  /// print out the values of elements to os
  virtual void print(std::ostream& os) const {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * print a part of the matrix
   * from the (top,left) value to the (height, width) value (not included)
   */
  virtual void print(std::ostream& os, size_t height, size_t width) const {
    LOG(FATAL) << "Not implemented";
  }

  /// print one row to os
  virtual void printOneRow(std::ostream& os, size_t idx) const {
    LOG(FATAL) << "Not implemented";
  }

  virtual void check(std::ostream& os, Matrix& refMat, bool printDiff = true) {}

  virtual real getMin() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }
  virtual real getMax() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void randomizeUniform() { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief  calulate the error of classification
   *
   * output[i] = 1 if row i is an error.
   *
   * output[i] = 0 if row i is correct.
839
   *
Z
zhangjinchao01 已提交
840
   */
841 842 843
  virtual void classificationError(Matrix& output,
                                   IVector& label,
                                   size_t topkSize = 1) {
Z
zhangjinchao01 已提交
844 845 846 847 848 849 850 851 852
    LOG(FATAL) << "Not implemented";
  }

  /**
   * This function is used to calculate the convolution:
   *
   * It will expand a feature matrix according to the
   * convolution filters
   */
853 854 855 856 857 858 859 860 861 862 863 864
  virtual void convExpand(Matrix& feature,
                          int feaImgHeight,
                          int feaImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW) {
Z
zhangjinchao01 已提交
865 866 867 868 869 870 871 872
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * This function is the reverse implementation of convExpand:
   *
   * Its function is to restore a expanded-matrix into a feature matrix
   */
873 874 875 876 877 878 879 880 881 882 883 884 885 886
  virtual void convShrink(Matrix& expandColMat,
                          int thisImgHeight,
                          int thisImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW,
                          real alpha = 1.0f,
                          real beta = 0.0f) {
Z
zhangjinchao01 已提交
887 888 889 890 891 892 893
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Pooling forward operation, pick out the largest element
   * in the sizeX of value
   */
894 895 896 897 898 899 900 901 902 903 904 905
  virtual void maxPoolForward(Matrix& inputMat,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
Z
zhangjinchao01 已提交
906 907 908 909
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling backward operation.
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
  virtual void maxPoolBackward(Matrix& image,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               Matrix& outGrad,
                               Matrix& outV,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
Z
zhangjinchao01 已提交
925 926 927 928
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling forward operation, caculate the average of sizeX elements.
929 930 931 932 933 934 935 936 937 938 939 940
  virtual void avgPoolForward(Matrix& input,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
Z
zhangjinchao01 已提交
941 942 943
    LOG(FATAL) << "Not implemeted";
  }

944 945 946 947 948 949 950 951 952 953 954 955 956
  virtual void avgPoolBackward(Matrix& input,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
Z
zhangjinchao01 已提交
957 958 959 960 961 962 963 964 965 966 967
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Input: one or more sequences. Each sequence contains some instances.
   *
   * Output: output size is the number of input sequences (NOT input
   * instances).
   *
   * output[i] is set to max_input[i].
   */
968 969
  virtual void maxSequenceForward(Matrix& input,
                                  const IVector& sequence,
Z
zhangjinchao01 已提交
970 971 972 973
                                  IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

974 975
  virtual void maxSequenceBackward(Matrix& outputGrad,
                                   const IVector& sequence,
Z
zhangjinchao01 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
                                   IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }
  /**
   * @brief  cross entropy for multi binary labels
   *
   * @code
   * this[i] = -sum(label[i][j]*log(output[i][j])
   *           + (1-label[i][j])*log(1-output[i][j]))
1027
   * @endcode
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
   */
  virtual void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  The gradient of cross entropy for multi binary labels on output
   *
   * @code
   * this[i][j] = -label[i][j]/output[i][j]
   *              + (1-label[i][j])/(1-output[i][j])
1039
   * @endcode
Z
zhangjinchao01 已提交
1040 1041 1042 1043 1044 1045 1046
   */
  virtual void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  Calculate the classification error for multi binary labels
1047
   *
Z
zhangjinchao01 已提交
1048 1049 1050 1051
   * @code
   * this[i] = sum((output[i][j] >= threshold && label[i][j] == 0)
   *            || (output[i][j] < threshold && label[i][j] == 1))
   *            / output->getWidth()
1052
   * @endcode
Z
zhangjinchao01 已提交
1053
   */
1054 1055
  virtual void classificationErrorMulti(Matrix& output,
                                        Matrix& label,
Z
zhangjinchao01 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
                                        real threshold) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void paramReluForward(Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardW(Matrix& oGrad, Matrix& data) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
H
hedaoyuan 已提交
1069

L
liaogang 已提交
1070 1071 1072 1073 1074
  virtual void bilinearForward(const Matrix& in,
                               const size_t inImgH,
                               const size_t inImgW,
                               const size_t outImgH,
                               const size_t outImgW,
L
liaogang 已提交
1075 1076 1077
                               const size_t numChannels,
                               const real ratioH,
                               const real ratioW) {
L
liaogang 已提交
1078 1079 1080 1081 1082 1083 1084
    LOG(FATAL) << "Not implemented";
  }
  virtual void bilinearBackward(const Matrix& out,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t inImgH,
                                const size_t inImgW,
L
liaogang 已提交
1085 1086 1087
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {
L
liaogang 已提交
1088 1089
    LOG(FATAL) << "Not implemented";
  }
1090 1091

  template <typename ExpressionType>
H
hedaoyuan 已提交
1092 1093 1094 1095 1096 1097 1098
  void operator=(const ExpressionType& expr) {
    if (useGpu_) {
      TensorGpuApply<real>(*this, expr);
    } else {
      TensorCpuApply<real>(*this, expr);
    }
  }
1099 1100 1101 1102

  bool isEmpty() const { return data_ == nullptr; }

  explicit operator bool() const { return !isEmpty(); }
Z
zhangjinchao01 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
};

inline std::ostream& operator<<(std::ostream& os, const Matrix& mat) {
  mat.print(os);
  return os;
}

class GpuMatrix : public Matrix {
public:
  GpuMatrix();

  GpuMatrix(size_t height, size_t width, bool trans = false);
  GpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, true) {}
1117 1118 1119 1120
  GpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
Z
zhangjinchao01 已提交
1121 1122
            bool trans = false)
      : Matrix(data, height, width, stride, trans, true) {}
1123 1124 1125
  GpuMatrix(GpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
Z
zhangjinchao01 已提交
1126 1127 1128 1129 1130 1131
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, true) {}
  ~GpuMatrix();

  void zeroMem();
  void resetOne();
1132
  void setDiag(real value);
Z
zhangjinchao01 已提交
1133 1134

  void resize(size_t newHeight, size_t newWidth);
1135 1136
  void resize(size_t newHeight,
              size_t newWidth,
Z
zhangjinchao01 已提交
1137
              size_t newNnz, /* used to allocate space */
1138 1139
              SparseValueType valueType,
              SparseFormat format) {
Z
zhangjinchao01 已提交
1140 1141
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1142 1143 1144
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
Z
zhangjinchao01 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  /**
   * Copy the data from cpu_memory buffer
   */
  void copyFrom(const real* hostSrc, size_t size);

  void copyFrom(const real* hostSrc, const int64_t* seq);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const Matrix& src);

  void copyFrom(const IVector& src);

1162
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
Z
zhangjinchao01 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

  real getElement(size_t x, size_t y) const;

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

1175 1176 1177
  real getMin();
  real getMax();

Z
zhangjinchao01 已提交
1178
  MatrixPtr getTranspose();
1179 1180
  void transpose(MatrixPtr& matTrans, bool memAlloc);
  void rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise);
Z
zhangjinchao01 已提交
1181

L
lzhao4ever 已提交
1182
  MatrixPtr getInverse();
1183
  void inverse(MatrixPtr& matInv, bool memAlloc);
L
lzhao4ever 已提交
1184

Z
zhangjinchao01 已提交
1185 1186
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1187
  void addSharedBias(Matrix& b, real scale);
Z
zhangjinchao01 已提交
1188 1189 1190 1191 1192 1193 1194

  /**
   * @code
   * add each sample from a to this.
   * @endcode
   */
  void collectBias(Matrix& a, real scale);
1195
  void collectSharedBias(Matrix& a, real scale);
Z
zhangjinchao01 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids);

  void addColumnVector(const Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
1227
  void mul(const Matrix& a, const Matrix& b, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1228 1229 1230 1231 1232 1233

  /**
   * @code
   * this = a*b
   * @endcode
   */
1234
  void mul(const Matrix& a, const Matrix& b);
Z
zhangjinchao01 已提交
1235 1236 1237

  void mul(const GpuMatrix& a, const GpuMatrix& b, real scaleAB, real scaleT);

1238 1239 1240
  void mul(const GpuSparseMatrix& a,
           const GpuMatrix& b,
           real scaleAB,
Z
zhangjinchao01 已提交
1241 1242
           real scaleT);

1243 1244 1245
  void mul(const GpuMatrix& a,
           const GpuSparseMatrix& b,
           real scaleAB,
Z
zhangjinchao01 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
           real scaleT);

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  void rightMul(Matrix& b, real scaleAB, real scaleT);

  /**
   * @code
   * this = this* b
   * @endcode
   */
  void rightMul(Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  void leftMul(Matrix& a, real scaleAB, real scaleT);

  /**
   * @code
   * this = a*this
   * @endcode
   */
  void leftMul(Matrix& a);

  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& max);
  void colMax(Matrix& max);
1281 1282 1283
  void colMax(IVector& maxIds, Matrix& max);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
Z
zhangjinchao01 已提交
1284 1285 1286

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1287 1288
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
Z
zhangjinchao01 已提交
1289
                                      real alpha);
1290 1291
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
Z
zhangjinchao01 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                                        real alpha);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxBackward(Matrix& outputV);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);
  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);
  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  virtual void print(std::ostream& os) const;
  virtual void print(std::ostream& os, size_t height, size_t width) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);
  void randomizeUniform();

1320
  void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
Z
zhangjinchao01 已提交
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandColMat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blochW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingWreal,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
Z
zhangjinchao01 已提交
1408 1409
                          IVector& index);

1410 1411
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
Z
zhangjinchao01 已提交
1412 1413
                           IVector& index);

L
liaogang 已提交
1414 1415 1416 1417 1418
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1419 1420 1421
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
L
liaogang 已提交
1422 1423 1424 1425 1426 1427

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1428 1429 1430
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1431 1432 1433 1434

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);

  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
1435 1436

  template <typename ExpressionType>
H
hedaoyuan 已提交
1437 1438 1439
  void operator=(const ExpressionType& expr) {
    TensorGpuApply<real>(*this, expr);
  }
Z
zhangjinchao01 已提交
1440 1441 1442 1443 1444 1445 1446
};

class CpuMatrix : public Matrix {
public:
  CpuMatrix(size_t height, size_t width, bool trans = false);
  CpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, false) {}
1447 1448 1449 1450
  CpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
Z
zhangjinchao01 已提交
1451 1452 1453
            bool trans = false)
      : Matrix(data, height, width, stride, trans, false) {}

1454 1455 1456
  CpuMatrix(CpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
Z
zhangjinchao01 已提交
1457 1458 1459 1460 1461 1462 1463
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, false) {}

  ~CpuMatrix();

  void zeroMem();
  void resetOne();
1464 1465
  void setDiag(real value);

Z
zhangjinchao01 已提交
1466
  void resize(size_t newHeight, size_t newWidth);
1467 1468
  void resize(size_t newHeight,
              size_t newWidth,
Z
zhangjinchao01 已提交
1469
              size_t newNnz, /* used to allocate space */
1470 1471
              SparseValueType valueType,
              SparseFormat format) {
Z
zhangjinchao01 已提交
1472 1473
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1474 1475 1476
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
Z
zhangjinchao01 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  real getElement(size_t x, size_t y) const;
  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

  MatrixPtr getTranspose();
1487 1488
  void transpose(MatrixPtr& matTrans, bool memAlloc);
  void rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise);
Z
zhangjinchao01 已提交
1489

L
lzhao4ever 已提交
1490
  MatrixPtr getInverse();
1491
  void inverse(MatrixPtr& matInv, bool memAlloc);
L
lzhao4ever 已提交
1492

Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
  void copyFrom(const Matrix& src);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const real* cpuSrc, size_t size);

  void copyFrom(const real* cpuSrc, const int64_t* seq);

  void copyFrom(const IVector& src);

  void copyFrom(CpuSparseMatrix& src);

1505
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
Z
zhangjinchao01 已提交
1506 1507 1508

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blcokH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandFeat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
Z
zhangjinchao01 已提交
1595 1596
                          IVector& index);

1597 1598
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
Z
zhangjinchao01 已提交
1599 1600 1601 1602 1603 1604 1605 1606
                           IVector& index);

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

public:
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1607
  void addSharedBias(Matrix& b, real scale);
Z
zhangjinchao01 已提交
1608 1609 1610

  /// add each sample of a to this.
  void collectBias(Matrix& a, real scale);
1611
  void collectSharedBias(Matrix& a, real scale);
Z
zhangjinchao01 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
1626
   */
Z
zhangjinchao01 已提交
1627 1628 1629 1630 1631 1632
  virtual void addToRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
1633
   */
Z
zhangjinchao01 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids);

  /**
   * use abstract getRow() to get row from table.
   *
   * Define table as template instead of virtual class for performance sake.
   * internal used by above two virtual funcs.
   */
  template <typename TableMatType>
  void selectRowsImp(TableMatType& table, IVector& ids);
  template <typename TableMatType>
  void addToRowsImp(TableMatType& table, IVector& ids);

  void addColumnVector(const Matrix& b);

1656
  void mul(const Matrix& a, const Matrix& b, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1657 1658 1659 1660
  void mul(CpuMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

  void mul(CpuMatrix* a, CpuSparseMatrix* b, real scaleAB, real scaleT);

1661 1662 1663 1664
  static void mul(CpuMatrix* a,
                  CpuMatrix* b,
                  CpuSparseMatrix* c,
                  real scaleAB,
Z
zhangjinchao01 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
                  real scaleT);

  /**
   * c = a * b
   *
   * use abstract getRow() to get row from B,C.
   * Define B,C as template instead of virtual class for performance sake.
   */
  template <typename MatBType, typename MatCType>
1674 1675
  static void mul(
      CpuSparseMatrix* a, MatBType* b, MatCType* c, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1676 1677 1678

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

1679
  void mul(const Matrix& a, const Matrix& b);
Z
zhangjinchao01 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

  void rightMul(Matrix& b, real scaleAB, real scaleT);
  void rightMul(Matrix& b);

  void leftMul(Matrix& a, real scaleAB, real scaleT);
  void leftMul(Matrix& a);
  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMaxId(IVector& maxIds);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& maxVal);
  void colMax(Matrix& max);
1692 1693 1694
  void colMax(IVector& maxIds, Matrix& maxVal);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
Z
zhangjinchao01 已提交
1695 1696 1697 1698
  void rowNormalizeL1(Matrix& out);

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1699 1700
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
Z
zhangjinchao01 已提交
1701
                                      real alpha);
1702 1703
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
Z
zhangjinchao01 已提交
1704 1705 1706
                                        real alpha);

  void circularConv(Matrix& b, Matrix& c);
1707 1708 1709 1710
  void circularConvDerivative(Matrix& output,
                              Matrix& prevOut1,
                              Matrix& prevOut2,
                              Matrix& prevGrad1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
                              Matrix& prevGrad2);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);

  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);

  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  void print(std::ostream& os) const;
  void print(std::ostream& os, size_t height, size_t width) const;
  void printOneRow(std::ostream& os, size_t idx) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);

  real getMin();
  real getMax();

  void randomizeUniform();

1745
  void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
Z
zhangjinchao01 已提交
1746 1747 1748

  void addByBitCode(size_t numClasses, const IVector& codes, const Matrix& vec);

1749 1750
  void addByBitCodeBackward(size_t numClasses,
                            const IVector& codes,
Z
zhangjinchao01 已提交
1751 1752
                            Matrix& vec);

1753 1754 1755
  void mulByBitCode(size_t numClasses,
                    const IVector& codes,
                    const Matrix& mat,
Z
zhangjinchao01 已提交
1756 1757
                    const Matrix& input);

1758 1759 1760 1761
  void mulByBitCodeBackwardWeight(size_t numClasses,
                                  const IVector& codes,
                                  Matrix& mat,
                                  const Matrix& input);
Z
zhangjinchao01 已提交
1762

1763 1764 1765 1766
  void mulByBitCodeBackwardError(size_t numClasses,
                                 const IVector& codes,
                                 const Matrix& mat,
                                 Matrix& input);
Z
zhangjinchao01 已提交
1767

1768 1769 1770
  void sumByBitCode(size_t numClasses,
                    IVector& codes,
                    Matrix& sum,
Z
zhangjinchao01 已提交
1771 1772 1773 1774 1775 1776 1777
                    real scaleSum);

  void subByBitCode(size_t numClasses_, IVector& codes);

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);
  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
  void classificationErrorMulti(Matrix& output, Matrix& label, real threshold);
H
hedaoyuan 已提交
1778

L
liaogang 已提交
1779 1780 1781 1782 1783
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1784 1785 1786
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
L
liaogang 已提交
1787 1788 1789 1790 1791 1792

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1793 1794 1795
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1796 1797

  template <typename ExpressionType>
H
hedaoyuan 已提交
1798 1799 1800
  void operator=(const ExpressionType& expr) {
    TensorCpuApply<real>(*this, expr);
  }
Z
zhangjinchao01 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809
};

class SharedCpuMatrix : public CpuMatrix {
public:
  /* blockNum is number of partitions of the matrix  */
  SharedCpuMatrix(int blockNum, size_t height, size_t width, bool trans = false)
      : CpuMatrix(height, width, trans) {
    initShared(blockNum);
  }
1810 1811
  SharedCpuMatrix(
      int blockNum, real* data, size_t height, size_t width, bool trans = false)
Z
zhangjinchao01 已提交
1812 1813 1814 1815
      : CpuMatrix(data, height, width, trans) {
    initShared(blockNum);
  }

1816 1817 1818 1819 1820
  SharedCpuMatrix(int blockNum,
                  CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
Z
zhangjinchao01 已提交
1821 1822 1823 1824
      : CpuMatrix(dataHandle, height, width, trans) {
    initShared(blockNum);
  }

1825 1826 1827 1828
  SharedCpuMatrix(CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
Z
zhangjinchao01 已提交
1829 1830 1831 1832 1833 1834 1835 1836
      : CpuMatrix(dataHandle, height, width, trans) {
    initBlock(1);
  }

  ~SharedCpuMatrix() {}

public:
  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);
Y
Yu Yang 已提交
1837 1838
  virtual void add(Matrix& b, real p1, real p2);
  virtual void add(real p1, real p2);
Z
zhangjinchao01 已提交
1839 1840

private:
H
hedaoyuan 已提交
1841
  using Matrix::mul;
Z
zhangjinchao01 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
  void initShared(int blockNum);
  void initBlock(int blockNum);

  int blockNum_;
  std::vector<std::unique_ptr<std::mutex>> blockLocks_;
  ThreadLocal<CpuMatrixPtr> localBuf_;
  ThreadLocal<std::vector<int>> localBufRows_;
  ThreadLocal<std::vector<int>> blockSeq_;
};

typedef struct { unsigned int col; } sparse_non_value_t;

typedef struct {
  unsigned int col;
  float value;
} sparse_float_value_t;

}  // namespace paddle
#include "ExecViaCpu.h"