Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8fded24c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8fded24c
编写于
2月 21, 2017
作者:
L
Liang Zhao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement top k classification error in class matrix
上级
d2565128
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
168 addition
and
146 deletion
+168
-146
paddle/cuda/include/hl_matrix.h
paddle/cuda/include/hl_matrix.h
+0
-13
paddle/cuda/include/hl_top_k.h
paddle/cuda/include/hl_top_k.h
+27
-1
paddle/cuda/src/hl_cuda_matrix.cu
paddle/cuda/src/hl_cuda_matrix.cu
+0
-53
paddle/cuda/src/hl_top_k.cu
paddle/cuda/src/hl_top_k.cu
+78
-0
paddle/gserver/evaluators/Evaluator.cpp
paddle/gserver/evaluators/Evaluator.cpp
+6
-46
paddle/gserver/layers/Layer.h
paddle/gserver/layers/Layer.h
+1
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+50
-30
paddle/math/Matrix.h
paddle/math/Matrix.h
+6
-3
未找到文件。
paddle/cuda/include/hl_matrix.h
浏览文件 @
8fded24c
...
...
@@ -69,19 +69,6 @@ extern void hl_sequence_softmax_forward(real* A_d,
const
int
*
index
,
int
numSequence
);
/**
* @brief Matrix classification error.
*
* @param[in] A_d input matrix (M x N).
* @param[in] B_d input vector (M x 1).
* @param[out] C_d output vector (M x 1).
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*
*/
extern
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
);
/**
* @brief Matrix cross entropy.
*
...
...
paddle/cuda/include/hl_top_k.h
浏览文件 @
8fded24c
...
...
@@ -58,4 +58,30 @@ extern void hl_sparse_matrix_top_k(real* topVal,
int
beamSize
,
int
numSamples
);
#endif
/* HL_TOP_K_H_ */
/**
* @brief Matrix classification error.
*
* @param[out] topVal top k element.
* @param[in] ldv leading dimension of topVal.
* @param[out] topIds top k index.
* @param[in] src input value.
* @param[in] lds leading dimension of src.
* @param[in] dim width of input value.
* @param[in] topkSize size of top k element.
* @param[in] numSamples height of input value.
* @param[in] label ground truth label.
* @param[out] recResult top-k classification error.
*
*/
extern
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
);
#endif // HL_TOP_K_H_
paddle/cuda/src/hl_cuda_matrix.cu
浏览文件 @
8fded24c
...
...
@@ -265,59 +265,6 @@ void hl_matrix_softmax_derivative(real *grad_d,
CHECK_SYNC
(
"hl_matrix_softmax_derivative failed"
);
}
template
<
int
blockSize
>
__global__
void
KeMatrixClassificationError
(
real
*
in_A
,
int
*
in_B
,
real
*
out_C
,
int
dimN
)
{
__shared__
real
max_s
[
blockSize
];
__shared__
int
max_l
[
blockSize
];
const
int
tid
=
threadIdx
.
x
;
const
int
rowId
=
blockIdx
.
x
;
max_s
[
tid
]
=
-
1e30
f
;
in_A
+=
rowId
*
dimN
;
real
tmp
;
for
(
int
colId
=
tid
;
colId
<
dimN
;
colId
+=
blockSize
)
{
tmp
=
in_A
[
colId
];
if
(
max_s
[
tid
]
<
tmp
)
{
max_s
[
tid
]
=
tmp
;
max_l
[
tid
]
=
colId
;
}
}
__syncthreads
();
for
(
int
stride
=
blockSize
/
2
;
stride
>
0
;
stride
=
stride
/
2
)
{
if
(
tid
<
stride
)
{
if
(
max_s
[
tid
]
<
max_s
[
tid
+
stride
])
{
max_s
[
tid
]
=
max_s
[
tid
+
stride
];
max_l
[
tid
]
=
max_l
[
tid
+
stride
];
}
}
__syncthreads
();
}
__syncthreads
();
if
(
tid
==
0
)
{
out_C
[
rowId
]
=
(
max_l
[
0
]
==
in_B
[
rowId
]
?
0
:
1.0
f
);
}
}
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
)
{
CHECK_NOTNULL
(
A_d
);
CHECK_NOTNULL
(
B_d
);
CHECK_NOTNULL
(
C_d
);
// each sample is calculated by one block
KeMatrixClassificationError
<
1024
><<<
dimM
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
A_d
,
B_d
,
C_d
,
dimN
);
CHECK_SYNC
(
"hl_matrix_classification_error"
);
}
__global__
void
KeMatrixMultiBinaryCrossEntropy
(
real
*
output
,
real
*
entropy
,
int
*
row
,
...
...
paddle/cuda/src/hl_top_k.cu
浏览文件 @
8fded24c
...
...
@@ -384,3 +384,81 @@ void hl_sparse_matrix_top_k(real* topVal, int ldv,
CHECK_SYNC
(
"hl_sparse_matrix_top_k failed"
);
}
/**
* Each block compute one sample.
* In a block:
* 1. every thread get top maxLength value;
* 2. merge to shTopK, block reduce and get max value;
* 3. go to the second setp, until one thread's topK value is null;
* 4. go to the first setp, until get the topK value.
*/
template
<
int
maxLength
,
int
blockSize
>
__global__
void
KeMatrixTopKClassificationError
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
beamSize
,
int
*
label
,
real
*
recResult
)
{
__shared__
Pair
shTopK
[
blockSize
];
__shared__
int
maxId
[
blockSize
/
2
];
const
int
tid
=
threadIdx
.
x
;
const
int
warp
=
threadIdx
.
x
/
32
;
src
+=
blockIdx
.
x
*
lds
;
topVal
+=
blockIdx
.
x
*
ldv
;
topIds
+=
blockIdx
.
x
*
beamSize
;
Pair
topK
[
maxLength
];
// NOLINT
int
beam
=
maxLength
;
Pair
max
;
bool
isEmpty
=
false
;
bool
firstStep
=
true
;
int
topkSize
=
beamSize
;
for
(
int
k
=
0
;
k
<
maxLength
;
k
++
)
{
topK
[
k
].
set
(
-
HL_FLOAT_MAX
,
-
1
);
}
while
(
beamSize
)
{
threadGetTopK
<
maxLength
,
blockSize
>
(
topK
,
beam
,
beamSize
,
src
,
firstStep
,
isEmpty
,
max
,
dim
,
tid
);
shTopK
[
tid
]
=
topK
[
0
];
blockReduce
<
maxLength
,
blockSize
>
(
shTopK
,
maxId
,
topK
,
&
topVal
,
&
topIds
,
beam
,
beamSize
,
tid
,
warp
);
}
__syncthreads
();
if
(
tid
==
0
)
{
for
(
int
i
=
0
;
i
<
topkSize
;
i
++
)
{
if
(
*--
topIds
==
label
[
blockIdx
.
x
])
{
recResult
[
blockIdx
.
x
]
=
0
;
break
;
}
recResult
[
blockIdx
.
x
]
=
1.0
f
;
}
}
}
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
)
{
CHECK_NOTNULL
(
topVal
);
CHECK_NOTNULL
(
topIds
);
CHECK_NOTNULL
(
src
);
if
(
topkSize
>
dim
)
topkSize
=
dim
;
dim3
threads
(
256
,
1
);
dim3
grid
(
numSamples
,
1
);
KeMatrixTopKClassificationError
<
5
,
256
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
topVal
,
ldv
,
topIds
,
src
,
lds
,
dim
,
topkSize
,
label
,
recResult
);
CHECK_SYNC
(
"hl_matrix_top_k classification error failed"
);
}
paddle/gserver/evaluators/Evaluator.cpp
浏览文件 @
8fded24c
...
...
@@ -39,12 +39,13 @@ void Evaluator::eval(const NeuralNetwork& nn) {
*/
class
ClassificationErrorEvaluator
:
public
Evaluator
{
public:
/*
ClassificationErrorEvaluator() : totalScore2_(0) {}
virtual void start() {
Evaluator::start();
totalScore2_ = 0;
}
} */
virtual
void
updateSamplesNum
(
const
std
::
vector
<
Argument
>&
arguments
)
{
if
(
3
==
arguments
.
size
())
{
...
...
@@ -83,42 +84,11 @@ public:
1
,
/* trans= */
false
,
useGpu
(
arguments
[
0
].
deviceId
));
const
MatrixPtr
errorMat2
=
Matrix
::
create
(
output
->
getHeight
(),
1
,
/* trans= */
false
,
false
);
errorMat
->
zeroMem
();
if
(
label
!=
nullptr
)
{
errorMat
->
classificationError
(
*
output
,
*
label
);
// top-1 error
if
(
config_
.
top_k
()
>
1
)
{
size_t
height
=
output
->
getHeight
();
size_t
width
=
config_
.
top_k
();
IVector
::
resizeOrCreate
(
maxIds_
,
height
*
width
,
useGpu
(
arguments
[
0
].
deviceId
));
Matrix
::
resizeOrCreate
(
maxValues_
,
height
,
width
,
false
,
useGpu
(
arguments
[
0
].
deviceId
));
output
->
rowMax
(
*
maxIds_
,
*
maxValues_
);
// top-k values
IVectorPtr
dest
=
IVector
::
create
(
maxIds_
->
getSize
(),
false
);
IVectorPtr
dest2
=
IVector
::
create
(
label
->
getSize
(),
false
);
dest
->
copyFrom
(
*
maxIds_
);
dest2
->
copyFrom
(
*
label
);
int
*
ids
=
dest
->
getData
();
int
*
lbl
=
dest2
->
getData
();
for
(
size_t
i
=
0
;
i
<
height
;
++
i
)
{
bool
contain
=
false
;
for
(
size_t
j
=
0
;
j
<
width
&&
!
contain
;
++
j
)
{
contain
=
(
ids
[
i
*
width
+
j
]
==
lbl
[
i
]);
}
if
(
!
contain
)
{
totalScore2_
+=
1.0
;
// update top-k error
}
}
}
errorMat
->
classificationError
(
*
output
,
*
label
,
config_
.
top_k
());
}
else
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
multiBinaryLabel
.
get
())
||
dynamic_cast
<
GpuSparseMatrix
*>
(
multiBinaryLabel
.
get
()))
{
errorMat
->
classificationErrorMulti
(
...
...
@@ -139,9 +109,8 @@ public:
os
<<
config_
.
name
()
<<
"="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
);
}
else
{
os
<<
"top_1_error="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
)
<<
" top_"
<<
config_
.
top_k
()
<<
"_error="
<<
(
numSamples_
?
totalScore2_
/
numSamples_
:
0
);
os
<<
" top_"
<<
config_
.
top_k
()
<<
"_error="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
);
}
}
...
...
@@ -151,17 +120,8 @@ public:
}
virtual
void
distributeEval
(
ParameterClient2
*
client
)
{
double
data
[
3
]
=
{
totalScore_
,
totalScore2_
,
numSamples_
};
client
->
reduce
(
data
,
data
,
3
,
FLAGS_trainer_id
,
0
);
totalScore_
=
data
[
0
];
totalScore2_
=
data
[
1
];
numSamples_
=
data
[
2
];
mergeResultsOfAllClients
(
client
);
}
private:
IVectorPtr
maxIds_
;
MatrixPtr
maxValues_
;
double
totalScore2_
;
};
/**
...
...
paddle/gserver/layers/Layer.h
浏览文件 @
8fded24c
...
...
@@ -311,6 +311,7 @@ public:
return
*
output
->
second
;
}
else
{
LOG
(
FATAL
)
<<
"No specific output "
<<
str
;
return
*
((
Argument
*
)
nullptr
);
}
}
}
...
...
paddle/math/Matrix.cpp
浏览文件 @
8fded24c
...
...
@@ -793,19 +793,32 @@ void GpuMatrix::maxoutBackward(Matrix& a,
}
/*calulate the error of classification */
void
GpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
auto
output_ptr
=
dynamic_cast
<
const
GpuMatrix
*>
(
&
output
);
auto
label_ptr
=
dynamic_cast
<
const
GpuIVector
*>
(
&
label
);
CHECK
(
output_ptr
&&
label_ptr
)
<<
"Invalid argument pointer"
;
CHECK
(
height_
==
output_ptr
->
height_
&&
width_
==
1
)
void
GpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
)
{
auto
gpuOutput
=
dynamic_cast
<
GpuMatrix
*>
(
&
output
);
auto
gpuLabel
=
dynamic_cast
<
GpuIVector
*>
(
&
label
);
size_t
numSamples
=
this
->
getHeight
();
GpuMatrixPtr
gpuTopVal
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
topkSize
);
GpuIVectorPtr
gpuTopIds
=
std
::
make_shared
<
GpuIVector
>
(
numSamples
*
topkSize
);
CHECK
(
gpuOutput
&&
gpuLabel
)
<<
"Invalid argument pointer"
;
CHECK
(
gpuTopVal
&&
gpuTopIds
)
<<
"Allocate GPU memory failed"
;
CHECK
(
gpuLabel
->
getSize
()
==
numSamples
)
<<
"Vector size is not equal"
;
CHECK
(
numSamples
==
gpuOutput
->
getHeight
()
&&
this
->
getWidth
()
==
1
)
<<
"Matrix dimensions are not equal"
;
hl_matrix_classification_error
((
real
*
)
output_ptr
->
data_
,
(
int
*
)
label_ptr
->
getData
(),
data_
,
height_
,
output_ptr
->
width_
);
size_t
dim
=
gpuOutput
->
getWidth
();
hl_matrix_classification_error
(
gpuTopVal
->
getData
(),
gpuTopVal
->
getStride
(),
gpuTopIds
->
getData
(),
gpuOutput
->
getData
(),
gpuOutput
->
getStride
(),
dim
,
topkSize
,
numSamples
,
gpuLabel
->
getData
(),
this
->
getData
());
}
/* copy -log(output[i * width + label]) to this->data[i] */
...
...
@@ -3200,32 +3213,39 @@ void CpuMatrix::rowNormalizeL1(Matrix& out) {
}
/* calulate classification error */
void
CpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
output
));
CHECK
(
dynamic_cast
<
const
CpuIVector
*>
(
&
label
));
void
CpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
)
{
size_t
numSamples
=
this
->
getHeight
();
auto
cpuOutput
=
dynamic_cast
<
CpuMatrix
*>
(
&
output
);
auto
cpuLabel
=
dynamic_cast
<
CpuIVector
*>
(
&
label
);
IVectorPtr
cpuTopIds
=
std
::
make_shared
<
CpuIVector
>
(
numSamples
*
topkSize
);
MatrixPtr
cpuTopVal
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
topkSize
);
CHECK
(
cpuOutput
&&
cpuLabel
)
<<
"Invalid argument pointer"
;
CHECK
(
cpuTopIds
&&
cpuTopVal
)
<<
"Allocate cpu memory failed"
;
CHECK
(
cpuLabel
->
getSize
()
==
numSamples
)
<<
"Vector size is not equal"
;
CHECK
(
cpuOutput
->
getHeight
()
==
numSamples
&&
this
->
getWidth
()
==
1
)
<<
"Matrix dimensions are not equal"
;
CHECK_EQ
(
getWidth
(),
(
size_t
)
1
);
size_t
numSamples
=
getHeight
();
CHECK_EQ
(
label
.
getSize
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
// top k matrix classification
cpuOutput
->
rowMax
(
*
cpuTopIds
,
*
cpuTopVal
);
size_t
dim
=
output
.
getWidth
();
real
*
out
=
output
.
getData
();
int
*
lbl
=
label
.
getData
();
real
maxData
=
0.0
;
int
maxIndex
=
-
1
;
size_t
dim
=
cpuOutput
->
getWidth
();
real
*
result
=
this
->
getData
();
int
*
ids
=
cpuTopIds
->
getData
();
int
*
lbl
=
cpuLabel
->
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
CHECK_GE
(
lbl
[
i
],
0
);
CHECK_LT
((
size_t
)
lbl
[
i
],
dim
);
maxData
=
out
[
i
*
dim
];
maxIndex
=
0
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
if
(
maxData
<
out
[
i
*
dim
+
j
])
{
maxIndex
=
j
;
maxData
=
out
[
i
*
dim
+
j
];
for
(
size_t
j
=
0
;
j
<
topkSize
;
++
j
)
{
if
(
ids
[
j
+
i
*
topkSize
]
==
lbl
[
i
])
{
result
[
i
]
=
0
;
break
;
}
result
[
i
]
=
1.0
f
;
}
getData
()[
i
]
=
(
maxIndex
!=
lbl
[
i
]);
}
}
...
...
paddle/math/Matrix.h
浏览文件 @
8fded24c
...
...
@@ -836,8 +836,11 @@ public:
* output[i] = 1 if row i is an error.
*
* output[i] = 0 if row i is correct.
*
*/
virtual
void
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
virtual
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
...
...
@@ -1314,7 +1317,7 @@ public:
void
check
(
std
::
ostream
&
os
,
Matrix
&
refMat
,
bool
printDiff
=
true
);
void
randomizeUniform
();
void
classificationError
(
Matrix
&
output
,
IVector
&
label
);
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
);
void
convExpand
(
Matrix
&
feature
,
int
feaImgHeight
,
...
...
@@ -1739,7 +1742,7 @@ public:
void
randomizeUniform
();
void
classificationError
(
Matrix
&
output
,
IVector
&
label
);
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
);
void
addByBitCode
(
size_t
numClasses
,
const
IVector
&
codes
,
const
Matrix
&
vec
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录