提交 8fded24c 编写于 作者: L Liang Zhao

implement top k classification error in class matrix

上级 d2565128
......@@ -69,19 +69,6 @@ extern void hl_sequence_softmax_forward(real* A_d,
const int* index,
int numSequence);
/**
* @brief Matrix classification error.
*
* @param[in] A_d input matrix (M x N).
* @param[in] B_d input vector (M x 1).
* @param[out] C_d output vector (M x 1).
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*
*/
extern void hl_matrix_classification_error(
real* A_d, int* B_d, real* C_d, int dimM, int dimN);
/**
* @brief Matrix cross entropy.
*
......
......@@ -58,4 +58,30 @@ extern void hl_sparse_matrix_top_k(real* topVal,
int beamSize,
int numSamples);
#endif /* HL_TOP_K_H_ */
/**
* @brief Matrix classification error.
*
* @param[out] topVal top k element.
* @param[in] ldv leading dimension of topVal.
* @param[out] topIds top k index.
* @param[in] src input value.
* @param[in] lds leading dimension of src.
* @param[in] dim width of input value.
* @param[in] topkSize size of top k element.
* @param[in] numSamples height of input value.
* @param[in] label ground truth label.
* @param[out] recResult top-k classification error.
*
*/
extern void hl_matrix_classification_error(real* topVal,
int ldv,
int* topIds,
real* src,
int lds,
int dim,
int topkSize,
int numSamples,
int* label,
real* recResult);
#endif // HL_TOP_K_H_
......@@ -265,59 +265,6 @@ void hl_matrix_softmax_derivative(real *grad_d,
CHECK_SYNC("hl_matrix_softmax_derivative failed");
}
template<int blockSize>
__global__ void KeMatrixClassificationError(real* in_A,
int* in_B,
real* out_C,
int dimN) {
__shared__ real max_s[blockSize];
__shared__ int max_l[blockSize];
const int tid = threadIdx.x;
const int rowId = blockIdx.x;
max_s[tid] = -1e30f;
in_A += rowId * dimN;
real tmp;
for (int colId = tid; colId < dimN; colId += blockSize) {
tmp = in_A[colId];
if (max_s[tid] < tmp) {
max_s[tid] = tmp;
max_l[tid] = colId;
}
}
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
if (tid < stride) {
if (max_s[tid] < max_s[tid + stride]) {
max_s[tid] = max_s[tid + stride];
max_l[tid] = max_l[tid + stride];
}
}
__syncthreads();
}
__syncthreads();
if (tid == 0) {
out_C[rowId] = (max_l[0] == in_B[rowId] ? 0 : 1.0f);
}
}
void hl_matrix_classification_error(real* A_d,
int* B_d,
real* C_d,
int dimM,
int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(B_d);
CHECK_NOTNULL(C_d);
// each sample is calculated by one block
KeMatrixClassificationError<1024><<< dimM, 1024, 0, STREAM_DEFAULT >>>
(A_d, B_d, C_d, dimN);
CHECK_SYNC("hl_matrix_classification_error");
}
__global__ void KeMatrixMultiBinaryCrossEntropy(real* output,
real* entropy,
int* row,
......
......@@ -384,3 +384,81 @@ void hl_sparse_matrix_top_k(real* topVal, int ldv,
CHECK_SYNC("hl_sparse_matrix_top_k failed");
}
/**
* Each block compute one sample.
* In a block:
* 1. every thread get top maxLength value;
* 2. merge to shTopK, block reduce and get max value;
* 3. go to the second setp, until one thread's topK value is null;
* 4. go to the first setp, until get the topK value.
*/
template<int maxLength, int blockSize>
__global__ void KeMatrixTopKClassificationError(real* topVal, int ldv,
int * topIds,
real* src, int lds,
int dim,
int beamSize,
int* label,
real* recResult) {
__shared__ Pair shTopK[blockSize];
__shared__ int maxId[blockSize / 2];
const int tid = threadIdx.x;
const int warp = threadIdx.x / 32;
src += blockIdx.x * lds;
topVal += blockIdx.x * ldv;
topIds += blockIdx.x * beamSize;
Pair topK[maxLength]; // NOLINT
int beam = maxLength;
Pair max;
bool isEmpty = false;
bool firstStep = true;
int topkSize = beamSize;
for (int k = 0; k < maxLength; k++) {
topK[k].set(-HL_FLOAT_MAX, -1);
}
while (beamSize) {
threadGetTopK<maxLength, blockSize>
(topK, beam, beamSize, src, firstStep, isEmpty, max, dim, tid);
shTopK[tid] = topK[0];
blockReduce<maxLength, blockSize>
(shTopK, maxId, topK, &topVal, &topIds, beam, beamSize, tid, warp);
}
__syncthreads();
if (tid == 0) {
for (int i = 0; i < topkSize; i++) {
if (*--topIds == label[blockIdx.x]) {
recResult[blockIdx.x] = 0;
break;
}
recResult[blockIdx.x] = 1.0f;
}
}
}
void hl_matrix_classification_error(real* topVal, int ldv,
int* topIds,
real* src, int lds,
int dim,
int topkSize,
int numSamples,
int* label,
real* recResult) {
CHECK_NOTNULL(topVal);
CHECK_NOTNULL(topIds);
CHECK_NOTNULL(src);
if (topkSize > dim) topkSize = dim;
dim3 threads(256, 1);
dim3 grid(numSamples, 1);
KeMatrixTopKClassificationError<5, 256>
<<< grid, threads, 0, STREAM_DEFAULT >>>
(topVal, ldv, topIds, src, lds, dim, topkSize, label, recResult);
CHECK_SYNC("hl_matrix_top_k classification error failed");
}
......@@ -39,12 +39,13 @@ void Evaluator::eval(const NeuralNetwork& nn) {
*/
class ClassificationErrorEvaluator : public Evaluator {
public:
/*
ClassificationErrorEvaluator() : totalScore2_(0) {}
virtual void start() {
Evaluator::start();
totalScore2_ = 0;
}
} */
virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
if (3 == arguments.size()) {
......@@ -83,42 +84,11 @@ public:
1,
/* trans= */ false,
useGpu(arguments[0].deviceId));
const MatrixPtr errorMat2 = Matrix::create(output->getHeight(),
1,
/* trans= */ false,
false);
errorMat->zeroMem();
if (label != nullptr) {
errorMat->classificationError(*output, *label); // top-1 error
if (config_.top_k() > 1) {
size_t height = output->getHeight();
size_t width = config_.top_k();
IVector::resizeOrCreate(
maxIds_, height * width, useGpu(arguments[0].deviceId));
Matrix::resizeOrCreate(
maxValues_, height, width, false, useGpu(arguments[0].deviceId));
output->rowMax(*maxIds_, *maxValues_); // top-k values
IVectorPtr dest = IVector::create(maxIds_->getSize(), false);
IVectorPtr dest2 = IVector::create(label->getSize(), false);
dest->copyFrom(*maxIds_);
dest2->copyFrom(*label);
int* ids = dest->getData();
int* lbl = dest2->getData();
for (size_t i = 0; i < height; ++i) {
bool contain = false;
for (size_t j = 0; j < width && !contain; ++j) {
contain = (ids[i * width + j] == lbl[i]);
}
if (!contain) {
totalScore2_ += 1.0; // update top-k error
}
}
}
errorMat->classificationError(*output, *label, config_.top_k());
} else if (dynamic_cast<CpuSparseMatrix*>(multiBinaryLabel.get()) ||
dynamic_cast<GpuSparseMatrix*>(multiBinaryLabel.get())) {
errorMat->classificationErrorMulti(
......@@ -139,9 +109,8 @@ public:
os << config_.name() << "="
<< (numSamples_ ? totalScore_ / numSamples_ : 0);
} else {
os << "top_1_error=" << (numSamples_ ? totalScore_ / numSamples_ : 0)
<< " top_" << config_.top_k()
<< "_error=" << (numSamples_ ? totalScore2_ / numSamples_ : 0);
os << " top_" << config_.top_k()
<< "_error=" << (numSamples_ ? totalScore_ / numSamples_ : 0);
}
}
......@@ -151,17 +120,8 @@ public:
}
virtual void distributeEval(ParameterClient2* client) {
double data[3] = {totalScore_, totalScore2_, numSamples_};
client->reduce(data, data, 3, FLAGS_trainer_id, 0);
totalScore_ = data[0];
totalScore2_ = data[1];
numSamples_ = data[2];
mergeResultsOfAllClients(client);
}
private:
IVectorPtr maxIds_;
MatrixPtr maxValues_;
double totalScore2_;
};
/**
......
......@@ -311,6 +311,7 @@ public:
return *output->second;
} else {
LOG(FATAL) << "No specific output " << str;
return *((Argument*)nullptr);
}
}
}
......
......@@ -793,19 +793,32 @@ void GpuMatrix::maxoutBackward(Matrix& a,
}
/*calulate the error of classification */
void GpuMatrix::classificationError(Matrix& output, IVector& label) {
auto output_ptr = dynamic_cast<const GpuMatrix*>(&output);
auto label_ptr = dynamic_cast<const GpuIVector*>(&label);
CHECK(output_ptr && label_ptr) << "Invalid argument pointer";
CHECK(height_ == output_ptr->height_ && width_ == 1)
void GpuMatrix::classificationError(Matrix& output,
IVector& label,
size_t topkSize) {
auto gpuOutput = dynamic_cast<GpuMatrix*>(&output);
auto gpuLabel = dynamic_cast<GpuIVector*>(&label);
size_t numSamples = this->getHeight();
GpuMatrixPtr gpuTopVal = std::make_shared<GpuMatrix>(numSamples, topkSize);
GpuIVectorPtr gpuTopIds = std::make_shared<GpuIVector>(numSamples * topkSize);
CHECK(gpuOutput && gpuLabel) << "Invalid argument pointer";
CHECK(gpuTopVal && gpuTopIds) << "Allocate GPU memory failed";
CHECK(gpuLabel->getSize() == numSamples) << "Vector size is not equal";
CHECK(numSamples == gpuOutput->getHeight() && this->getWidth() == 1)
<< "Matrix dimensions are not equal";
hl_matrix_classification_error((real*)output_ptr->data_,
(int*)label_ptr->getData(),
data_,
height_,
output_ptr->width_);
size_t dim = gpuOutput->getWidth();
hl_matrix_classification_error(gpuTopVal->getData(),
gpuTopVal->getStride(),
gpuTopIds->getData(),
gpuOutput->getData(),
gpuOutput->getStride(),
dim,
topkSize,
numSamples,
gpuLabel->getData(),
this->getData());
}
/* copy -log(output[i * width + label]) to this->data[i] */
......@@ -3200,32 +3213,39 @@ void CpuMatrix::rowNormalizeL1(Matrix& out) {
}
/* calulate classification error */
void CpuMatrix::classificationError(Matrix& output, IVector& label) {
CHECK(dynamic_cast<const CpuMatrix*>(&output));
CHECK(dynamic_cast<const CpuIVector*>(&label));
void CpuMatrix::classificationError(Matrix& output,
IVector& label,
size_t topkSize) {
size_t numSamples = this->getHeight();
auto cpuOutput = dynamic_cast<CpuMatrix*>(&output);
auto cpuLabel = dynamic_cast<CpuIVector*>(&label);
IVectorPtr cpuTopIds = std::make_shared<CpuIVector>(numSamples * topkSize);
MatrixPtr cpuTopVal = std::make_shared<CpuMatrix>(numSamples, topkSize);
CHECK(cpuOutput && cpuLabel) << "Invalid argument pointer";
CHECK(cpuTopIds && cpuTopVal) << "Allocate cpu memory failed";
CHECK(cpuLabel->getSize() == numSamples) << "Vector size is not equal";
CHECK(cpuOutput->getHeight() == numSamples && this->getWidth() == 1)
<< "Matrix dimensions are not equal";
CHECK_EQ(getWidth(), (size_t)1);
size_t numSamples = getHeight();
CHECK_EQ(label.getSize(), numSamples);
CHECK_EQ(output.getHeight(), numSamples);
// top k matrix classification
cpuOutput->rowMax(*cpuTopIds, *cpuTopVal);
size_t dim = output.getWidth();
real* out = output.getData();
int* lbl = label.getData();
real maxData = 0.0;
int maxIndex = -1;
size_t dim = cpuOutput->getWidth();
real* result = this->getData();
int* ids = cpuTopIds->getData();
int* lbl = cpuLabel->getData();
for (size_t i = 0; i < numSamples; ++i) {
CHECK_GE(lbl[i], 0);
CHECK_LT((size_t)lbl[i], dim);
maxData = out[i * dim];
maxIndex = 0;
for (size_t j = 0; j < dim; ++j) {
if (maxData < out[i * dim + j]) {
maxIndex = j;
maxData = out[i * dim + j];
for (size_t j = 0; j < topkSize; ++j) {
if (ids[j + i * topkSize] == lbl[i]) {
result[i] = 0;
break;
}
result[i] = 1.0f;
}
getData()[i] = (maxIndex != lbl[i]);
}
}
......
......@@ -836,8 +836,11 @@ public:
* output[i] = 1 if row i is an error.
*
* output[i] = 0 if row i is correct.
*
*/
virtual void classificationError(Matrix& output, IVector& label) {
virtual void classificationError(Matrix& output,
IVector& label,
size_t topkSize = 1) {
LOG(FATAL) << "Not implemented";
}
......@@ -1314,7 +1317,7 @@ public:
void check(std::ostream& os, Matrix& refMat, bool printDiff = true);
void randomizeUniform();
void classificationError(Matrix& output, IVector& label);
void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
void convExpand(Matrix& feature,
int feaImgHeight,
......@@ -1739,7 +1742,7 @@ public:
void randomizeUniform();
void classificationError(Matrix& output, IVector& label);
void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
void addByBitCode(size_t numClasses, const IVector& codes, const Matrix& vec);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册