Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
069d0004
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
069d0004
编写于
11月 04, 2016
作者:
H
Haonan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
multi_binary_cross_entropy when ids vector is provided
上级
ef5e483c
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
263 addition
and
4 deletion
+263
-4
paddle/cuda/include/hl_matrix.h
paddle/cuda/include/hl_matrix.h
+30
-0
paddle/cuda/include/stub/hl_matrix_stub.h
paddle/cuda/include/stub/hl_matrix_stub.h
+12
-0
paddle/cuda/src/hl_cuda_matrix.cu
paddle/cuda/src/hl_cuda_matrix.cu
+78
-0
paddle/gserver/layers/CostLayer.cpp
paddle/gserver/layers/CostLayer.cpp
+4
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+4
-3
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+36
-0
paddle/math/Matrix.h
paddle/math/Matrix.h
+4
-0
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+65
-1
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+22
-0
paddle/parameter/Argument.h
paddle/parameter/Argument.h
+8
-0
未找到文件。
paddle/cuda/include/hl_matrix.h
浏览文件 @
069d0004
...
...
@@ -126,6 +126,36 @@ extern void hl_matrix_cross_entropy_bp(real* grad_d,
int
dimM
,
int
dimN
);
/**
* @brief Matrix multi-binary label cross entropy
*
* @param[in] output input matrix (M x N).
* @param[out] entropy output matrix (M x 1).
* @param[in] mat input sparse matrix.
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*/
extern
void
hl_matrix_multi_binary_cross_entropy
(
real
*
output
,
real
*
entropy
,
hl_sparse_matrix_s
mat
,
int
dimM
,
int
dimN
);
/**
* @brief Matrix multi-binary label cross entropy backprop
*
* @param[in] output input matrix (M x N).
* @param[out] grad output matrix (M x N).
* @param[in] mat input sparse matrix.
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*/
extern
void
hl_matrix_multi_binary_cross_entropy_bp
(
real
*
output
,
real
*
grad
,
hl_sparse_matrix_s
mat
,
int
dimM
,
int
dimN
);
/**
* @brief Matrix zero memory.
*
...
...
paddle/cuda/include/stub/hl_matrix_stub.h
浏览文件 @
069d0004
...
...
@@ -57,6 +57,18 @@ inline void hl_matrix_cross_entropy_bp(real* grad_d,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_multi_binary_cross_entropy
(
real
*
output
,
real
*
entropy
,
hl_sparse_matrix_s
mat
,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_multi_binary_cross_entropy_bp
(
real
*
output
,
real
*
grad
,
hl_sparse_matrix_s
mat
,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_zero_mem
(
real
*
data
,
int
num
)
{}
inline
void
hl_param_relu_forward
(
real
*
output
,
...
...
paddle/cuda/src/hl_cuda_matrix.cu
浏览文件 @
069d0004
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "hl_matrix_ops.cuh"
#include "hl_matrix_apply.cuh"
#include "hl_sequence.h"
#include "hl_sparse.ph"
#include "paddle/utils/Logging.h"
#include "hl_device_functions.cuh"
#include "hl_gpu_matrix_kernel.cuh"
...
...
@@ -317,6 +318,83 @@ void hl_matrix_classification_error(real* A_d,
CHECK_SYNC
(
"hl_matrix_classification_error"
);
}
__global__
void
KeMatrixMultiBinaryCrossEntropy
(
real
*
output
,
real
*
entropy
,
int
*
row
,
int
*
col
,
int
dimM
,
int
dimN
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
dimM
)
{
for
(
int
i
=
0
;
i
<
dimN
;
i
++
)
{
entropy
[
index
]
-=
log
(
1
-
output
[
index
*
dimN
+
i
]);
}
int
*
row_col
=
col
+
row
[
index
];
int
col_num
=
row
[
index
+
1
]
-
row
[
index
];
for
(
int
i
=
0
;
i
<
col_num
;
i
++
)
{
real
o
=
output
[
index
*
dimN
+
row_col
[
i
]];
entropy
[
index
]
-=
log
(
o
/
(
1
-
o
));
}
}
}
void
hl_matrix_multi_binary_cross_entropy
(
real
*
output
,
real
*
entropy
,
hl_sparse_matrix_s
csr_mat
,
int
dimM
,
int
dimN
)
{
CHECK_NOTNULL
(
output
);
CHECK_NOTNULL
(
entropy
);
CHECK_NOTNULL
(
csr_mat
);
int
n_threads
=
1024
;
int
blocks
=
(
dimM
+
n_threads
-
1
)
/
n_threads
;
dim3
threads
(
n_threads
);
dim3
grid
(
blocks
);
hl_csr_matrix
mat
=
(
hl_csr_matrix
)(
csr_mat
->
matrix
);
KeMatrixMultiBinaryCrossEntropy
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
output
,
entropy
,
mat
->
csr_row
,
mat
->
csr_col
,
dimM
,
dimN
);
CHECK_SYNC
(
"hl_matrix_multi_binary_cross_entropy failed"
);
}
__global__
void
KeMatrixMultiBinaryCrossEntropyBp
(
real
*
output
,
real
*
grad
,
int
*
row
,
int
*
col
,
int
dimM
,
int
dimN
)
{
int
row_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
row_idx
<
dimM
)
{
for
(
int
i
=
0
;
i
<
dimN
;
i
++
)
{
int
index
=
row_idx
*
dimN
+
i
;
grad
[
index
]
+=
1.0
/
(
1
-
output
[
index
]);
}
int
col_num
=
row
[
row_idx
+
1
]
-
row
[
row_idx
];
int
*
row_col
=
col
+
row
[
row_idx
];
for
(
int
i
=
0
;
i
<
col_num
;
i
++
)
{
int
index
=
row_idx
*
dimN
+
row_col
[
i
];
grad
[
index
]
-=
1.0
/
(
output
[
index
]
*
(
1
-
output
[
index
]));
}
}
}
void
hl_matrix_multi_binary_cross_entropy_bp
(
real
*
output
,
real
*
grad
,
hl_sparse_matrix_s
csr_mat
,
int
dimM
,
int
dimN
)
{
CHECK_NOTNULL
(
output
);
CHECK_NOTNULL
(
grad
);
CHECK_NOTNULL
(
csr_mat
);
int
n_threads
=
1024
;
int
blocks
=
(
dimM
+
n_threads
-
1
)
/
n_threads
;
dim3
threads
(
n_threads
);
dim3
grid
(
blocks
);
hl_csr_matrix
mat
=
(
hl_csr_matrix
)(
csr_mat
->
matrix
);
KeMatrixMultiBinaryCrossEntropyBp
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
output
,
grad
,
mat
->
csr_row
,
mat
->
csr_col
,
dimM
,
dimN
);
CHECK_SYNC
(
"hl_matrix_multi_binary_cross_entropy_bp failed"
);
}
__global__
void
KeMatrixCrossEntropy
(
real
*
O
,
real
*
E
,
int
*
label
,
...
...
paddle/gserver/layers/CostLayer.cpp
浏览文件 @
069d0004
...
...
@@ -462,6 +462,8 @@ bool MultiBinaryLabelCrossEntropy::init(const LayerMap& layerMap,
void
MultiBinaryLabelCrossEntropy
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
label
.
idsToSparseMatrix
(
output
.
getWidth
(),
useGpu_
);
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
label
.
value
.
get
())
||
dynamic_cast
<
GpuSparseMatrix
*>
(
label
.
value
.
get
()))
{
target
.
multiBinaryLabelCrossEntropy
(
output
,
*
label
.
value
);
...
...
@@ -476,6 +478,8 @@ void MultiBinaryLabelCrossEntropy::forwardImp(Matrix& output, Argument& label,
void
MultiBinaryLabelCrossEntropy
::
backwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
label
.
idsToSparseMatrix
(
output
.
getWidth
(),
useGpu_
);
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
label
.
value
.
get
())
||
dynamic_cast
<
GpuSparseMatrix
*>
(
label
.
value
.
get
()))
{
outputG
.
multiBinaryLabelCrossEntropyBp
(
output
,
*
label
.
value
);
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
069d0004
...
...
@@ -538,9 +538,10 @@ TEST(Layer, multi_binary_label) {
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// Not support GPU now
testLayerGrad
(
config
,
"multi_binary_label_cross_entropy"
,
100
,
/* trans */
false
,
/* useGpu */
false
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"multi_binary_label_cross_entropy"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
Layer
,
multi_cross_with_selfnorm
)
{
...
...
paddle/math/Matrix.cpp
浏览文件 @
069d0004
...
...
@@ -1268,6 +1268,42 @@ void GpuMatrix::bilinearBackward(const Matrix& out,
}
}
void
GpuMatrix
::
multiBinaryLabelCrossEntropy
(
Matrix
&
output
,
Matrix
&
label
)
{
GpuMatrix
*
output_ptr
=
dynamic_cast
<
GpuMatrix
*>
(
&
output
);
auto
label_ptr
=
dynamic_cast
<
GpuSparseMatrix
*>
(
&
label
);
CHECK
(
output_ptr
&&
label_ptr
)
<<
"Invalid argument pointer"
;
CHECK
(
label_ptr
->
format_
==
SPARSE_CSR
)
<<
"Matrix format not supported"
;
CHECK
(
height_
==
output_ptr
->
height_
&&
width_
==
1
&&
output_ptr
->
width_
==
label_ptr
->
getWidth
()
&&
output_ptr
->
height_
==
label_ptr
->
getHeight
())
<<
"Matrix dimensions are not equal"
;
real
*
output_d
=
output_ptr
->
data_
;
real
*
entropy_d
=
data_
;
hl_sparse_matrix_s
mat_d
=
label_ptr
->
sMatrix_
.
get
();
hl_matrix_multi_binary_cross_entropy
(
output_d
,
entropy_d
,
mat_d
,
height_
,
output_ptr
->
width_
);
}
void
GpuMatrix
::
multiBinaryLabelCrossEntropyBp
(
Matrix
&
output
,
Matrix
&
label
)
{
GpuMatrix
*
output_ptr
=
dynamic_cast
<
GpuMatrix
*>
(
&
output
);
auto
label_ptr
=
dynamic_cast
<
GpuSparseMatrix
*>
(
&
label
);
CHECK
(
output_ptr
&&
label_ptr
)
<<
"Invalid argument pointer"
;
CHECK
(
label_ptr
->
format_
==
SPARSE_CSR
)
<<
"Matrix format not supported"
;
CHECK
(
height_
==
output_ptr
->
height_
&&
width_
==
output_ptr
->
width_
&&
output_ptr
->
width_
==
label_ptr
->
getWidth
()
&&
output_ptr
->
height_
==
label_ptr
->
getHeight
())
<<
"Matrix dimensions are not equal"
;
real
*
output_d
=
output_ptr
->
data_
;
real
*
grad_d
=
data_
;
hl_sparse_matrix_s
mat_d
=
label_ptr
->
sMatrix_
.
get
();
hl_matrix_multi_binary_cross_entropy_bp
(
output_d
,
grad_d
,
mat_d
,
height_
,
width_
);
}
/**
* CpuMatrix
*/
...
...
paddle/math/Matrix.h
浏览文件 @
069d0004
...
...
@@ -1303,6 +1303,10 @@ public:
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
void
multiBinaryLabelCrossEntropy
(
Matrix
&
output
,
Matrix
&
label
);
void
multiBinaryLabelCrossEntropyBp
(
Matrix
&
output
,
Matrix
&
label
);
};
class
CpuMatrix
:
public
Matrix
{
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
069d0004
...
...
@@ -2208,7 +2208,6 @@ void testCollectSharedBias(int numSamples, int dim, int channel) {
MatrixCheckErr
(
*
cpuBias
,
*
check
);
}
TEST
(
Matrix
,
sharedBias
)
{
for
(
auto
numSamples
:
{
1
,
100
,
520
})
{
for
(
auto
dim
:
{
100
*
16
,
100
*
32
})
{
...
...
@@ -2222,6 +2221,71 @@ TEST(Matrix, sharedBias) {
}
}
void
testMultiBinaryLabelCrossEntropy
(
int
numSamples
,
int
dim
)
{
MatrixPtr
output
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
MatrixPtr
cpuOutput
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
MatrixPtr
gpuOutput
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
dim
);
MatrixPtr
cpuEntropy
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
gpuEntropy
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
cpuGrad
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
MatrixPtr
gpuGrad
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
dim
);
auto
cpuRows
=
IVector
::
create
(
numSamples
+
1
,
false
);
auto
cpuCols
=
IVector
::
create
(
numSamples
,
false
);
auto
gpuRows
=
IVector
::
create
(
numSamples
+
1
,
true
);
auto
gpuCols
=
IVector
::
create
(
numSamples
,
true
);
cpuRows
->
setElement
(
0
,
0
);
gpuRows
->
setElement
(
0
,
0
);
for
(
int
i
=
0
;
i
<
numSamples
;
i
++
)
{
int
id
=
rand
()
%
dim
;
// NOLINT
cpuRows
->
setElement
(
i
+
1
,
i
+
1
);
gpuRows
->
setElement
(
i
+
1
,
i
+
1
);
cpuCols
->
setElement
(
i
,
id
);
gpuCols
->
setElement
(
i
,
id
);
}
MatrixPtr
cpuLabel
=
std
::
make_shared
<
CpuSparseMatrix
>
(
nullptr
,
cpuRows
->
getData
(),
cpuCols
->
getData
(),
numSamples
,
dim
,
numSamples
,
NO_VALUE
,
SPARSE_CSR
,
false
);
MatrixPtr
gpuLabel
=
std
::
make_shared
<
GpuSparseMatrix
>
(
nullptr
,
gpuRows
->
getData
(),
gpuCols
->
getData
(),
numSamples
,
dim
,
numSamples
,
NO_VALUE
,
SPARSE_CSR
,
false
);
output
->
randomizeUniform
();
cpuOutput
->
zeroMem
();
output
->
softmax
(
*
cpuOutput
);
gpuOutput
->
copyFrom
(
*
cpuOutput
);
cpuEntropy
->
zeroMem
();
gpuEntropy
->
zeroMem
();
cpuEntropy
->
multiBinaryLabelCrossEntropy
(
*
cpuOutput
,
*
cpuLabel
);
gpuEntropy
->
multiBinaryLabelCrossEntropy
(
*
gpuOutput
,
*
gpuLabel
);
MatrixPtr
check1
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
1
);
check1
->
copyFrom
(
*
gpuEntropy
);
MatrixCheckErr
(
*
cpuEntropy
,
*
check1
);
cpuGrad
->
zeroMem
();
gpuGrad
->
zeroMem
();
cpuGrad
->
multiBinaryLabelCrossEntropyBp
(
*
cpuOutput
,
*
cpuLabel
);
gpuGrad
->
multiBinaryLabelCrossEntropyBp
(
*
gpuOutput
,
*
gpuLabel
);
MatrixPtr
check2
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
check2
->
copyFrom
(
*
gpuGrad
);
MatrixCheckErr
(
*
cpuGrad
,
*
check2
);
}
TEST
(
Matrix
,
multiBinaryCrossEntropy
)
{
for
(
auto
numSamples
:
{
1
,
100
,
500
})
{
for
(
auto
dim
:
{
1000
,
10000
,
100000
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" dim="
<<
dim
;
testMultiBinaryLabelCrossEntropy
(
numSamples
,
dim
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
paddle/parameter/Argument.cpp
浏览文件 @
069d0004
...
...
@@ -572,4 +572,26 @@ void Argument::subArgFrom(const Argument& input, size_t offset, size_t height,
}
}
void
Argument
::
idsToSparseMatrix
(
int
width
,
bool
useGpu
)
{
if
(
ids
)
{
CHECK
(
!
value
);
int
height
=
ids
->
getSize
();
int
nnz
=
height
;
auto
rows
=
IVector
::
create
(
height
+
1
,
useGpu
);
auto
cols
=
IVector
::
create
(
nnz
,
useGpu
);
rows
->
setElement
(
0
,
0
);
for
(
int
i
=
0
;
i
<
height
;
i
++
)
{
int
id
=
ids
->
getElement
(
i
);
CHECK_LT
(
id
,
width
);
rows
->
setElement
(
i
+
1
,
i
+
1
);
cols
->
setElement
(
i
,
id
);
}
value
=
Matrix
::
createSparseMatrix
(
nullptr
,
rows
->
getData
(),
cols
->
getData
(),
height
,
width
,
nnz
,
NO_VALUE
,
SPARSE_CSR
,
false
,
useGpu
);
}
else
{
CHECK
(
value
);
}
}
}
// namespace paddle
paddle/parameter/Argument.h
浏览文件 @
069d0004
...
...
@@ -286,6 +286,14 @@ struct Argument {
sequence has sub-sequence degrades to a sequence.
*/
void
degradeSequence
(
const
Argument
&
input
,
bool
useGpu
);
/*
@brief convert the ids vector to value as a sparse matrix
the ids vector keeps valid
@param the matrix width (id range)
@useGpu
*/
void
idsToSparseMatrix
(
int
width
,
bool
useGpu
);
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录