test_tile_op.py 11.1 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
L
lilong12 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
姜永久 已提交
20
from eager_op_test import OpTest
21

L
lilong12 已提交
22 23
import paddle
import paddle.fluid as fluid
24
from paddle.fluid import Program, core, program_guard
L
lilong12 已提交
25 26


27
# Situation 1: repeat_times is a list (without tensor)
L
lilong12 已提交
28 29 30
class TestTileOpRank1(OpTest):
    def setUp(self):
        self.op_type = "tile"
姜永久 已提交
31
        self.python_api = paddle.tile
L
lilong12 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        self.init_data()

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'repeat_times': self.repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class TestTileOpRank_ZeroDim1(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = []


class TestTileOpRank_ZeroDim2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = [2]


class TestTileOpRank_ZeroDim3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = [2, 3]


L
lilong12 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# with dimension expanding
class TestTileOpRank2Expanding(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.repeat_times = [2, 2]


class TestTileOpRank2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


class TestTileOpRank3_Corner(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (1, 1, 1)


class TestTileOpRank3_Corner2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (2, 2)


class TestTileOpRank3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 15)
        self.repeat_times = (2, 1, 4)


class TestTileOpRank4(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.repeat_times = (3, 2, 1, 2)


L
lilong12 已提交
105
# Situation 2: repeat_times is a list (with tensor)
L
lilong12 已提交
106 107 108
class TestTileOpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "tile"
姜永久 已提交
109
        self.python_api = paddle.tile
L
lilong12 已提交
110 111 112
        self.init_data()
        repeat_times_tensor = []
        for index, ele in enumerate(self.repeat_times):
113 114 115
            repeat_times_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
lilong12 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'repeat_times_tensor': repeat_times_tensor,
        }
        self.attrs = {"repeat_times": self.infer_repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]
        self.infer_repeat_times = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [1, 1]
        self.infer_repeat_times = [1, -1]


class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]
        self.infer_repeat_times = [-1, 3]


# Situation 3: repeat_times is a tensor
class TestTileOpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "tile"
姜永久 已提交
155
        self.python_api = paddle.tile
L
lilong12 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'RepeatTimes': np.array(self.repeat_times).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


# Situation 4: input x is Integer
class TestTileOpInteger(OpTest):
    def setUp(self):
        self.op_type = "tile"
姜永久 已提交
187
        self.python_api = paddle.tile
L
lilong12 已提交
188
        self.inputs = {
189
            'X': np.random.randint(10, size=(4, 4, 5)).astype("int32")
L
lilong12 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestTileOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "tile"
姜永久 已提交
203
        self.python_api = paddle.tile
L
lilong12 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestTileOpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "tile"
姜永久 已提交
217
        self.python_api = paddle.tile
L
lilong12 已提交
218
        self.inputs = {
219
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
L
lilong12 已提交
220 221 222 223 224 225 226 227 228 229 230 231
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestTileError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
232 233 234
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
L
lilong12 已提交
235 236
            repeat_times = [2, 2]
            self.assertRaises(TypeError, paddle.tile, x1, repeat_times)
G
GGBond8488 已提交
237
            x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8")
L
lilong12 已提交
238
            self.assertRaises(TypeError, paddle.tile, x2, repeat_times)
G
GGBond8488 已提交
239
            x3 = paddle.static.data(name='x3', shape=[-1, 4], dtype="bool")
L
lilong12 已提交
240
            x3.stop_gradient = False
L
lilong12 已提交
241 242 243
            self.assertRaises(ValueError, paddle.tile, x3, repeat_times)


244 245 246 247
class TestTileAPIStatic(unittest.TestCase):
    def test_api(self):
        with program_guard(Program(), Program()):
            repeat_times = [2, 2]
G
GGBond8488 已提交
248
            x1 = paddle.static.data(name='x1', shape=[-1, 4], dtype="int32")
249 250 251 252 253
            out = paddle.tile(x1, repeat_times)
            positive_2 = fluid.layers.fill_constant([1], dtype="int32", value=2)
            out2 = paddle.tile(x1, repeat_times=[positive_2, 2])


L
lilong12 已提交
254 255 256
# Test python API
class TestTileAPI(unittest.TestCase):
    def test_api(self):
L
lilong12 已提交
257 258
        with fluid.dygraph.guard():
            np_x = np.random.random([12, 14]).astype("float32")
259
            x = paddle.to_tensor(np_x)
L
lilong12 已提交
260 261

            positive_2 = np.array([2]).astype("int32")
262
            positive_2 = paddle.to_tensor(positive_2)
L
lilong12 已提交
263 264

            repeat_times = np.array([2, 3]).astype("int32")
265
            repeat_times = paddle.to_tensor(repeat_times)
L
lilong12 已提交
266 267 268 269 270 271 272 273

            out_1 = paddle.tile(x, repeat_times=[2, 3])
            out_2 = paddle.tile(x, repeat_times=[positive_2, 3])
            out_3 = paddle.tile(x, repeat_times=repeat_times)

            assert np.array_equal(out_1.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_2.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
L
lilong12 已提交
274 275


276 277 278 279 280 281 282 283 284 285
class TestTileDoubleGradCheck(unittest.TestCase):
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [2, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
286
        data = paddle.static.data('data', [1, 2], dtype)
287 288 289 290
        data.persistable = True
        out = paddle.tile(data, [2, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

291 292 293 294 295 296
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.tile_wrapper, [data], out, x_init=[data_arr], place=place
        )
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTileTripleGradCheck(unittest.TestCase):
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [2, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
317
        data = paddle.static.data('data', [1, 2], dtype)
318 319 320 321
        data.persistable = True
        out = paddle.tile(data, [2, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

322 323 324 325 326 327
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.tile_wrapper, [data], out, x_init=[data_arr], place=place
        )
328 329 330 331 332 333 334 335 336 337

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


338 339 340 341 342 343 344 345
class TestTileAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()

        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.tile(x, [])
姜永久 已提交
346
        out.retain_grads()
347 348 349 350 351 352
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        out = paddle.tile(x, [3])
姜永久 已提交
353
        out.retain_grads()
354 355 356 357 358 359
        out.backward()
        self.assertEqual(out.shape, [3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [3])

        out = paddle.tile(x, [2, 3])
姜永久 已提交
360
        out.retain_grads()
361 362 363 364 365 366 367 368
        out.backward()
        self.assertEqual(out.shape, [2, 3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [2, 3])

        paddle.enable_static()


L
lilong12 已提交
369
if __name__ == "__main__":
H
hong 已提交
370
    paddle.enable_static()
L
lilong12 已提交
371
    unittest.main()