test_tile_op.py 7.6 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard


H
hong 已提交
25
#Situation 1: repeat_times is a list (without tensor)
L
lilong12 已提交
26
class TestTileOpRank1(OpTest):
27

L
lilong12 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'repeat_times': self.repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# with dimension expanding
class TestTileOpRank2Expanding(TestTileOpRank1):
50

L
lilong12 已提交
51 52 53 54 55 56
    def init_data(self):
        self.ori_shape = [120]
        self.repeat_times = [2, 2]


class TestTileOpRank2(TestTileOpRank1):
57

L
lilong12 已提交
58 59 60 61 62 63
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


class TestTileOpRank3_Corner(TestTileOpRank1):
64

L
lilong12 已提交
65 66 67 68 69 70
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (1, 1, 1)


class TestTileOpRank3_Corner2(TestTileOpRank1):
71

L
lilong12 已提交
72 73 74 75 76 77
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (2, 2)


class TestTileOpRank3(TestTileOpRank1):
78

L
lilong12 已提交
79 80 81 82 83 84
    def init_data(self):
        self.ori_shape = (2, 4, 15)
        self.repeat_times = (2, 1, 4)


class TestTileOpRank4(TestTileOpRank1):
85

L
lilong12 已提交
86 87 88 89 90
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.repeat_times = (3, 2, 1, 2)


L
lilong12 已提交
91
# Situation 2: repeat_times is a list (with tensor)
L
lilong12 已提交
92
class TestTileOpRank1_tensor_attr(OpTest):
93

L
lilong12 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def setUp(self):
        self.op_type = "tile"
        self.init_data()
        repeat_times_tensor = []
        for index, ele in enumerate(self.repeat_times):
            repeat_times_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'repeat_times_tensor': repeat_times_tensor,
        }
        self.attrs = {"repeat_times": self.infer_repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]
        self.infer_repeat_times = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr):
123

L
lilong12 已提交
124 125 126 127 128 129 130
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [1, 1]
        self.infer_repeat_times = [1, -1]


class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
131

L
lilong12 已提交
132 133 134 135 136 137 138 139
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]
        self.infer_repeat_times = [-1, 3]


# Situation 3: repeat_times is a tensor
class TestTileOpRank1_tensor(OpTest):
140

L
lilong12 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'RepeatTimes': np.array(self.repeat_times).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
165

L
lilong12 已提交
166 167 168 169 170 171 172
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


# Situation 4: input x is Integer
class TestTileOpInteger(OpTest):
173

L
lilong12 已提交
174 175 176
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {
177
            'X': np.random.randint(10, size=(4, 4, 5)).astype("int32")
L
lilong12 已提交
178 179 180 181 182 183 184 185 186 187 188
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestTileOpBoolean(OpTest):
189

L
lilong12 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestTileOpInt64_t(OpTest):
203

L
lilong12 已提交
204 205 206
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {
207
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
L
lilong12 已提交
208 209 210 211 212 213 214 215 216 217
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestTileError(unittest.TestCase):
218

L
lilong12 已提交
219 220
    def test_errors(self):
        with program_guard(Program(), Program()):
221 222
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
L
lilong12 已提交
223 224 225 226 227
            repeat_times = [2, 2]
            self.assertRaises(TypeError, paddle.tile, x1, repeat_times)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, paddle.tile, x2, repeat_times)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
L
lilong12 已提交
228
            x3.stop_gradient = False
L
lilong12 已提交
229 230 231
            self.assertRaises(ValueError, paddle.tile, x3, repeat_times)


232
class TestTileAPIStatic(unittest.TestCase):
233

234 235 236 237 238 239 240 241 242
    def test_api(self):
        with program_guard(Program(), Program()):
            repeat_times = [2, 2]
            x1 = fluid.layers.data(name='x1', shape=[4], dtype="int32")
            out = paddle.tile(x1, repeat_times)
            positive_2 = fluid.layers.fill_constant([1], dtype="int32", value=2)
            out2 = paddle.tile(x1, repeat_times=[positive_2, 2])


L
lilong12 已提交
243 244
# Test python API
class TestTileAPI(unittest.TestCase):
245

L
lilong12 已提交
246
    def test_api(self):
L
lilong12 已提交
247 248
        with fluid.dygraph.guard():
            np_x = np.random.random([12, 14]).astype("float32")
249
            x = paddle.to_tensor(np_x)
L
lilong12 已提交
250 251

            positive_2 = np.array([2]).astype("int32")
252
            positive_2 = paddle.to_tensor(positive_2)
L
lilong12 已提交
253 254

            repeat_times = np.array([2, 3]).astype("int32")
255
            repeat_times = paddle.to_tensor(repeat_times)
L
lilong12 已提交
256 257 258 259 260 261 262 263

            out_1 = paddle.tile(x, repeat_times=[2, 3])
            out_2 = paddle.tile(x, repeat_times=[positive_2, 3])
            out_3 = paddle.tile(x, repeat_times=repeat_times)

            assert np.array_equal(out_1.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_2.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
L
lilong12 已提交
264 265 266


if __name__ == "__main__":
H
hong 已提交
267
    paddle.enable_static()
L
lilong12 已提交
268
    unittest.main()