test_tile_op.py 11.0 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
20
from paddle.fluid import Program, core, program_guard
21 22 23
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
L
lilong12 已提交
24 25


26
# Situation 1: repeat_times is a list (without tensor)
L
lilong12 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
class TestTileOpRank1(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'repeat_times': self.repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class TestTileOpRank_ZeroDim1(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = []


class TestTileOpRank_ZeroDim2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = [2]


class TestTileOpRank_ZeroDim3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = [2, 3]


L
lilong12 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
# with dimension expanding
class TestTileOpRank2Expanding(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.repeat_times = [2, 2]


class TestTileOpRank2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


class TestTileOpRank3_Corner(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (1, 1, 1)


class TestTileOpRank3_Corner2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (2, 2)


class TestTileOpRank3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 15)
        self.repeat_times = (2, 1, 4)


class TestTileOpRank4(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.repeat_times = (3, 2, 1, 2)


L
lilong12 已提交
103
# Situation 2: repeat_times is a list (with tensor)
L
lilong12 已提交
104 105 106 107 108 109
class TestTileOpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()
        repeat_times_tensor = []
        for index, ele in enumerate(self.repeat_times):
110 111 112
            repeat_times_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
lilong12 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'repeat_times_tensor': repeat_times_tensor,
        }
        self.attrs = {"repeat_times": self.infer_repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]
        self.infer_repeat_times = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [1, 1]
        self.infer_repeat_times = [1, -1]


class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]
        self.infer_repeat_times = [-1, 3]


# Situation 3: repeat_times is a tensor
class TestTileOpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'RepeatTimes': np.array(self.repeat_times).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


# Situation 4: input x is Integer
class TestTileOpInteger(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {
184
            'X': np.random.randint(10, size=(4, 4, 5)).astype("int32")
L
lilong12 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestTileOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestTileOpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {
212
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
L
lilong12 已提交
213 214 215 216 217 218 219 220 221 222 223 224
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestTileError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
225 226 227
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
L
lilong12 已提交
228 229 230 231 232
            repeat_times = [2, 2]
            self.assertRaises(TypeError, paddle.tile, x1, repeat_times)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, paddle.tile, x2, repeat_times)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
L
lilong12 已提交
233
            x3.stop_gradient = False
L
lilong12 已提交
234 235 236
            self.assertRaises(ValueError, paddle.tile, x3, repeat_times)


237 238 239 240 241 242 243 244 245 246
class TestTileAPIStatic(unittest.TestCase):
    def test_api(self):
        with program_guard(Program(), Program()):
            repeat_times = [2, 2]
            x1 = fluid.layers.data(name='x1', shape=[4], dtype="int32")
            out = paddle.tile(x1, repeat_times)
            positive_2 = fluid.layers.fill_constant([1], dtype="int32", value=2)
            out2 = paddle.tile(x1, repeat_times=[positive_2, 2])


L
lilong12 已提交
247 248 249
# Test python API
class TestTileAPI(unittest.TestCase):
    def test_api(self):
L
lilong12 已提交
250 251
        with fluid.dygraph.guard():
            np_x = np.random.random([12, 14]).astype("float32")
252
            x = paddle.to_tensor(np_x)
L
lilong12 已提交
253 254

            positive_2 = np.array([2]).astype("int32")
255
            positive_2 = paddle.to_tensor(positive_2)
L
lilong12 已提交
256 257

            repeat_times = np.array([2, 3]).astype("int32")
258
            repeat_times = paddle.to_tensor(repeat_times)
L
lilong12 已提交
259 260 261 262 263 264 265 266

            out_1 = paddle.tile(x, repeat_times=[2, 3])
            out_2 = paddle.tile(x, repeat_times=[positive_2, 3])
            out_3 = paddle.tile(x, repeat_times=repeat_times)

            assert np.array_equal(out_1.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_2.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
L
lilong12 已提交
267 268


269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
class TestTileDoubleGradCheck(unittest.TestCase):
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [2, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 2], False, dtype)
        data.persistable = True
        out = paddle.tile(data, [2, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

284 285 286
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
287
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
288 289 290
        gradient_checker.double_grad_check_for_dygraph(
            self.tile_wrapper, [data], out, x_init=[data_arr], place=place
        )
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTileTripleGradCheck(unittest.TestCase):
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [2, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 2], False, dtype)
        data.persistable = True
        out = paddle.tile(data, [2, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

316 317 318
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
319
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
320 321 322
        gradient_checker.triple_grad_check_for_dygraph(
            self.tile_wrapper, [data], out, x_init=[data_arr], place=place
        )
323 324 325 326 327 328 329 330 331 332

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
class TestTileAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})

        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.tile(x, [])
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        out = paddle.tile(x, [3])
        out.backward()
        self.assertEqual(out.shape, [3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [3])

        out = paddle.tile(x, [2, 3])
        out.backward()
        self.assertEqual(out.shape, [2, 3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [2, 3])

        paddle.enable_static()


L
lilong12 已提交
362
if __name__ == "__main__":
H
hong 已提交
363
    paddle.enable_static()
L
lilong12 已提交
364
    unittest.main()