reshape_op.cc 32.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
19

20 21
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
22
#include "paddle/pten/common/scalar_array.h"
23
#include "paddle/pten/include/core.h"
24
#include "paddle/pten/kernels/reshape_kernel.h"
W
wanghuancoder 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
40 41 42
namespace paddle {
namespace operators {

43 44 45 46 47 48 49 50
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
51 52
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
53 54 55 56 57
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
58 59
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
60 61 62 63 64 65 66 67 68 69 70 71
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
72 73 74 75 76 77 78 79
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
80
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
81 82
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
83
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
84 85
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
86

87 88
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
89
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
90 91
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
92 93 94 95 96
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
97 98 99 100 101 102 103
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
104 105 106 107 108
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
109 110 111 112 113 114 115
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
116

117 118 119 120 121 122 123 124 125 126 127
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
128 129
      return;
    }
130 131

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
132 133 134 135 136
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
137

138 139 140 141
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
155 156 157
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
158 159 160 161 162 163 164 165 166 167
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
168 169
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
170 171 172 173
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
174 175
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
176 177
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
178 179 180 181 182 183
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
184
      } else {
185 186
        PADDLE_ENFORCE_GT(
            shape[i], 0,
187 188
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
189
                "be negative except one unknown dimension. "
190 191
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
192 193
      }

194 195
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
196 197 198 199 200 201
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
202
      if (all_positive) {
Y
yuyang18 已提交
203 204 205 206 207
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
208 209 210 211 212 213 214
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
215
                "'shape' is [%s], known capacity of 'shape' is %d.",
216
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
217 218 219 220
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
221 222 223
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
224 225 226 227 228 229 230
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
231
      }
Y
yuyang18 已提交
232
    }
233 234 235 236 237

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
238
      PADDLE_ENFORCE_LE(
239 240 241 242 243 244 245 246 247
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
              in_dims, in_size, framework::make_ddim(shape), capacity));
    }

Y
yuyang18 已提交
248 249 250 251 252 253
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
254 255 256 257
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
258
  }
259 260 261 262 263 264 265 266 267 268

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
269 270
};

Y
Yibing Liu 已提交
271 272
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
273
  void Make() override {
274 275
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
276 277 278
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
279
             "set correctly to guarantee shape inference in compile time.")
280
        .AsDispensable();
281 282
    AddInput(
        "ShapeTensor",
283 284 285 286
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
287 288
        .AsDuplicable()
        .AsDispensable();
289
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
290
    AddAttr<std::vector<int>>(
291 292 293 294
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
295
        .SetDefault({});
296 297
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
298 299
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
300 301
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
302

303 304
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
305

C
caoying03 已提交
306
Examples:
Y
Yibing Liu 已提交
307

C
caoying03 已提交
308 309 310 311
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

312
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
313 314 315 316 317 318
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

319
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
320 321 322 323
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
324

C
caoying03 已提交
325
Note:
Y
Yibing Liu 已提交
326

C
caoying03 已提交
327 328 329
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
330 331

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
332
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
333
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
334
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
335 336

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
337
Attr(shape) still should be set correctly to guarantee shape inference in
338
compile-time.
Y
Yibing Liu 已提交
339

Y
Yibing Liu 已提交
340 341 342 343 344 345 346 347 348 349 350 351
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

352
  void InferShape(framework::InferShapeContext *ctx) const override {
353 354 355
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
356
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
357 358
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
359
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
360
  }
361 362 363 364

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
365 366 367 368
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
369
  }
Y
Yibing Liu 已提交
370 371
};

Y
yuyang18 已提交
372 373 374 375 376
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
377 378 379
    // framework::DDim out_dims = out->dims();
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);

380 381 382 383 384 385 386
    // we can't MakePtenDenseTensor by out, because the out of reshape may have
    // multiple states, some can MakePtenDenseTensor but other's cannot:
    // 1. out tensor is not initialized
    // 2. out tensor is input (complete inplace)
    // 3. out tensor is view of input
    // We can't MakePtenDenseTensor for case 2, so we solve this case by
    // creating a temporary tensor here:
387
    pten::DenseTensorMeta meta{pten::TransToPtenDataType(in->type()),
388
                               in->dims(), in->layout()};
389 390 391 392
    auto pt_out_tmp = std::make_shared<pten::DenseTensor>(
        pten::make_intrusive<paddle::experimental::SharedStorage>(
            ctx.GetPlace()),
        std::move(meta));
393
    pten::DenseTensor *pt_out = nullptr;
394 395 396
    if (in != nullptr && out != nullptr && in->Holder() != nullptr &&
        out->Holder() != nullptr &&
        in->Holder()->ptr() == out->Holder()->ptr()) {
397 398 399 400
      pt_out = pt_x.get();
    } else {
      pt_out = pt_out_tmp.get();
    }
Y
yuyang18 已提交
401

402 403
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
404 405 406
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
407
    pten::ScalarArray pt_scalar_shape;
408 409
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
410 411 412 413 414 415 416 417 418 419 420 421 422
      std::vector<pten::DenseTensor> pt_vec_shape;
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
          TensorCopySync(*tensor, platform::CPUPlace(), &temp);
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(temp))));
        } else {
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(*tensor))));
        }
      }
423
      pt_scalar_shape = pten::ScalarArray(pt_vec_shape);
424 425 426 427 428 429 430 431 432 433
    } else if (shape_tensor) {
      std::unique_ptr<pten::DenseTensor> pt_shape;
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &temp);
        pt_shape = paddle::experimental::MakePtenDenseTensor(temp);
      } else {
        pt_shape = paddle::experimental::MakePtenDenseTensor(*shape_tensor);
      }
434
      pt_scalar_shape = pten::ScalarArray(*pt_shape.get());
435
    } else {
436
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
437 438 439 440
      pt_scalar_shape = pten::ScalarArray(shape_attr);
    }
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
441
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
442
    }
443
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
444 445
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
446
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
447
    }
448 449
#endif
#ifdef PADDLE_WITH_XPU
450 451
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
452
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
453
    }
454
#endif
455 456 457
    // non-inplace need move all result from pt_out to out, inplace need set
    // result dims.
    if (in != out) {
458
      paddle::experimental::SharesStorage(pt_out, static_cast<Tensor *>(out));
459 460
    } else {
      out->Resize(pt_out->dims());
Y
yuyang18 已提交
461
    }
Y
yuyang18 已提交
462
  }
Y
yuyang18 已提交
463 464 465 466 467 468 469
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
470
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
471

472
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
473 474 475
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
D
dzhwinter 已提交
476
    d_x->Resize(in_dims);
Y
yuyang18 已提交
477
  }
Y
yuyang18 已提交
478 479
};

480 481 482 483 484 485 486 487 488
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
489 490 491
    framework::TensorCopy(
        *dd_x, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dd_out);
492 493 494 495
    dd_out->Resize(out_dims);
  }
};

496 497 498 499 500 501 502 503 504 505 506 507 508
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
509
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
510 511
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
512 513 514 515 516 517 518 519
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
520 521

    ReshapeOp::InferShape(ctx);
522
  }
523 524 525

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
526
    std::string shape;
527 528
    auto multi_inputs = ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (multi_inputs.size() > 0) {
529
      shape = "ShapeTensor";
530
    } else if (ctx.HasInput("Shape")) {
531
      shape = "Shape";
532
    } else {
533
      shape = "shape";
534
    }
535
    return framework::KernelSignature("reshape", {"X"}, {shape}, {"Out"});
536
  }
537 538 539 540 541 542 543 544 545 546
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
547 548 549 550
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
551
        .SetDefault(false);
552 553 554 555 556
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
557 558 559
  }
};

H
hong 已提交
560 561
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
562
 public:
H
hong 已提交
563
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
564

565
  void Apply(GradOpPtr<T> grad_op) const override {
566
    grad_op->SetType("reshape2_grad");
H
hong 已提交
567 568 569 570
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
571 572 573
  }
};

H
hong 已提交
574 575
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
576
 public:
H
hong 已提交
577
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
578

579
  void Apply(GradOpPtr<T> grad_op) const override {
580
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
581 582 583 584
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
585 586 587
  }
};

588 589 590 591 592 593 594 595 596
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
597 598 599
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
600
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
601 602
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
603 604 605 606 607 608 609 610 611
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
612 613 614 615
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
616
  }
617 618 619 620 621 622 623 624 625 626

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
627 628
};

629 630 631 632 633 634 635 636 637 638
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
639 640
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
641 642 643 644 645 646 647 648
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
649 650 651
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
652 653 654 655 656 657 658 659 660 661 662 663 664
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

665 666
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
667 668
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
669 670
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
671
                                    "DOut");
D
dzhwinter 已提交
672

Y
Yibing Liu 已提交
673 674 675
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
676
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
677

H
hong 已提交
678 679 680 681
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
682
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
683
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
684
                  ops::ReshapeGradInplaceInferer);
685

686 687 688 689 690 691 692
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
693
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
694 695
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
696
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
697
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
698 699
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
700
                  ops::ReshapeGradInplaceInferer);
701
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
702 703
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
704

705 706 707 708
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
709 710 711
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
712 713 714 715 716

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
717
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
718 719
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
720 721 722 723
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
724
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
725 726
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
727
    ops::ReshapeDoubleGradKernel);
728

729
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
730 731
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
732 733
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
734
                                ops::ReshapeKernel);
735 736 737
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
738
                                ops::ReshapeGradKernel, uint8_t,
739
                                ops::ReshapeGradKernel, plat::float16,
740

741 742 743
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
744 745
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
746
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
747 748
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
749 750 751 752
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
753 754
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
755 756 757 758 759 760

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
761 762 763
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
764
#endif
765 766 767 768 769

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
770
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
771 772
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
773 774 775 776
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
777
                               ops::ReshapeGradKernel, bool,
778 779
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
780
                               ops::ReshapeGradKernel);
781
#endif