reshape_op.cc 25.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15 16
#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

Y
Yibing Liu 已提交
19 20 21
namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
30 31
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
32 33 34 35 36
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
37 38 39 40 41 42 43 44 45 46 47 48 49
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
50 51 52 53 54 55 56 57
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
58 59 60 61
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of ReshapeOp should not be null.");
Y
yuyang18 已提交
62

63 64
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
65
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
66 67
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
68 69 70 71 72
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
73 74 75 76 77 78 79
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
80 81 82 83 84
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
85 86 87 88 89 90 91
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
92

93 94 95 96 97 98 99 100 101 102 103
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
104 105
      return;
    }
106 107

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
108 109 110 111 112
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
113

114 115 116 117
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
131 132 133
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
134 135 136 137 138 139 140 141 142 143
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
144 145
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
146 147 148 149
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
150 151
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
152 153
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
154 155 156 157 158 159
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
160
      } else {
161 162
        PADDLE_ENFORCE_GT(
            shape[i], 0,
163 164
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
165
                "be negative except one unknown dimension. "
166 167
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
168 169 170 171 172 173 174 175
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
176
      if (all_positive) {
Y
yuyang18 已提交
177 178 179 180 181
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
182 183 184 185 186 187 188
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
189
                "'shape' is [%s], known capacity of 'shape' is %d.",
190
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
191 192 193 194
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
195 196 197
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
198 199 200 201 202 203 204
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
205
      }
Y
yuyang18 已提交
206 207 208 209 210 211 212
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
213 214 215
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Y
yuyang18 已提交
216
  }
217 218 219 220 221 222 223 224 225 226

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
227 228
};

Y
Yibing Liu 已提交
229 230
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
231
  void Make() override {
232 233
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
234 235 236
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
237
             "set correctly to guarantee shape inference in compile time.")
238
        .AsDispensable();
239 240
    AddInput(
        "ShapeTensor",
241 242 243 244
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
245 246
        .AsDuplicable()
        .AsDispensable();
247
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
248
    AddAttr<std::vector<int>>(
249 250 251 252
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
253
        .SetDefault({});
K
kexinzhao 已提交
254 255
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
256

257 258
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
259

C
caoying03 已提交
260
Examples:
Y
Yibing Liu 已提交
261

C
caoying03 已提交
262 263 264 265
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

266
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
267 268 269 270 271 272
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

273
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
274 275 276 277
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
278

C
caoying03 已提交
279
Note:
Y
Yibing Liu 已提交
280

C
caoying03 已提交
281 282 283
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
284 285

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
286
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
287
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
288
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
289 290

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
291
Attr(shape) still should be set correctly to guarantee shape inference in
292
compile-time.
Y
Yibing Liu 已提交
293

Y
Yibing Liu 已提交
294 295 296 297 298 299 300 301 302 303 304 305
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

306
  void InferShape(framework::InferShapeContext *ctx) const override {
307 308 309
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
Q
Qiao Longfei 已提交
310
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
311
  }
312 313 314 315

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
316 317 318
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
319
  }
Y
Yibing Liu 已提交
320 321
};

Y
yuyang18 已提交
322 323 324 325 326
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
327

Y
yuyang18 已提交
328
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
        if (platform::is_gpu_place(shape_tensor->place())) {
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
353 354
      }
    }
Y
yuyang18 已提交
355

356
    out->Resize(out_dims);
357
    out->mutable_data(ctx.GetPlace(), in->type());
Y
Yiqun Liu 已提交
358 359 360
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
361 362
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
363 364 365 366 367 368 369
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
370
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
371

372 373
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
D
dzhwinter 已提交
374
    d_x->Resize(in_dims);
Y
yuyang18 已提交
375
  }
Y
yuyang18 已提交
376 377
};

378 379 380 381 382 383 384 385 386 387 388 389 390 391
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
    framework::TensorCopySync(*dd_x, ctx.GetPlace(), dd_out);
    dd_out->Resize(out_dims);
  }
};

392 393 394 395 396 397 398 399 400 401 402 403 404
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
405 406
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output(XShape) of ReshapeOp should not be null.");
407 408 409 410 411 412 413 414
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
415 416

    ReshapeOp::InferShape(ctx);
417 418 419 420 421 422 423 424 425 426 427
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
428 429 430 431 432 433 434
    /* int8 parameters */
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Used only on CPU.")
        .SetDefault(false);
435 436 437
  }
};

H
hong 已提交
438 439
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
440
 public:
H
hong 已提交
441
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
442

443
  void Apply(GradOpPtr<T> grad_op) const override {
444
    grad_op->SetType("reshape2_grad");
H
hong 已提交
445 446 447 448
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
449 450 451
  }
};

H
hong 已提交
452 453
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
454
 public:
H
hong 已提交
455
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
456

457
  void Apply(GradOpPtr<T> grad_op) const override {
458
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
459 460 461 462
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
463 464 465
  }
};

466 467 468 469 470 471 472 473 474
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
475 476 477 478
    PADDLE_ENFORCE_EQ(ctx->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
479 480 481 482 483 484 485 486 487
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
488 489 490
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
491
  }
492 493 494 495 496 497 498 499 500 501

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
502 503
};

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
                      "Input(X@GRAD_GRAD) shouldn't be null.");

    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
524 525 526
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
527 528 529 530 531 532 533 534 535 536 537 538 539
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

540 541 542 543
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInToOut, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInToOut,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
544
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInToOut, {"DDX", "DDOut"});
Z
Zeng Jinle 已提交
545 546
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInference,
                                    "DOut");
D
dzhwinter 已提交
547

Y
Yibing Liu 已提交
548 549 550
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
551
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
552

H
hong 已提交
553 554 555 556 557
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
    ops::ReshapeOpInplaceInToOut);
D
dzhwinter 已提交
558 559
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
                  ops::ReshapeGradInplaceInToOut);
560

561 562 563 564 565 566 567
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
568
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
569 570 571
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
                  ops::ReshapeOpInplaceInToOut);
D
dzhwinter 已提交
572
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
573 574 575
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
                  ops::ReshapeGradInplaceInToOut);
576
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
577 578
                  ops::ReshapeDoubleGradInplaceInToOut,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInference);
579

580
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
581 582 583
                               ops::ReshapeKernel, int8_t, ops::ReshapeKernel,
                               uint8_t, ops::ReshapeKernel, int,
                               ops::ReshapeKernel, int64_t, ops::ReshapeKernel);
584 585 586 587
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
588 589 590 591 592
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad_grad, float,
                               ops::ReshapeDoubleGradKernel, double,
                               ops::ReshapeDoubleGradKernel, int,
                               ops::ReshapeDoubleGradKernel, int64_t,
                               ops::ReshapeDoubleGradKernel);
593

Y
yuyang18 已提交
594
#ifdef PADDLE_WITH_CUDA
595 596
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
597 598
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
599 600 601
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
602
                                ops::ReshapeGradKernel, plat::float16,
603 604 605
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
606 607
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
608 609 610
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
611
                                ops::ReshapeGradKernel, plat::float16,
612
                                ops::ReshapeGradKernel);
613 614 615 616 617 618 619

REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad_grad, float,
                                ops::ReshapeDoubleGradKernel, double,
                                ops::ReshapeDoubleGradKernel, int,
                                ops::ReshapeDoubleGradKernel, int64_t,
                                ops::ReshapeDoubleGradKernel, plat::float16,
                                ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
620
#endif