reshape_op.cc 29.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
34 35 36
namespace paddle {
namespace operators {

37 38 39 40 41 42 43 44
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
45 46
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
47 48 49 50 51
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
52 53
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
54 55 56 57 58 59 60 61 62 63 64 65
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
66 67 68 69 70 71 72 73
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
74
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
75 76
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
77
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
78 79
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
80

81 82
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
83
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
84 85
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
86 87 88 89 90
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
91 92 93 94 95 96 97
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
98 99 100 101 102
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
103 104 105 106 107 108 109
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
110

111 112 113 114 115 116 117 118 119 120 121
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
122 123
      return;
    }
124 125

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
126 127 128 129 130
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
131

132 133 134 135
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
149 150 151
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
152 153 154 155 156 157 158 159 160 161
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
162 163
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
164 165 166 167
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
168 169
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
170 171
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
172 173 174 175 176 177
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
178
      } else {
179 180
        PADDLE_ENFORCE_GT(
            shape[i], 0,
181 182
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
183
                "be negative except one unknown dimension. "
184 185
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
186 187 188 189 190 191 192 193
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
194
      if (all_positive) {
Y
yuyang18 已提交
195 196 197 198 199
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
200 201 202 203 204 205 206
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
207
                "'shape' is [%s], known capacity of 'shape' is %d.",
208
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
209 210 211 212
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
213 214 215
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
216 217 218 219 220 221 222
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
223
      }
Y
yuyang18 已提交
224 225 226 227 228 229 230
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
231 232 233
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Y
yuyang18 已提交
234
  }
235 236 237 238 239 240 241 242 243 244

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
245 246
};

Y
Yibing Liu 已提交
247 248
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
249
  void Make() override {
250 251
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
252 253 254
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
255
             "set correctly to guarantee shape inference in compile time.")
256
        .AsDispensable();
257 258
    AddInput(
        "ShapeTensor",
259 260 261 262
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
263 264
        .AsDuplicable()
        .AsDispensable();
265
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
266
    AddAttr<std::vector<int>>(
267 268 269 270
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
271
        .SetDefault({});
K
kexinzhao 已提交
272 273
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
274

275 276
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
277

C
caoying03 已提交
278
Examples:
Y
Yibing Liu 已提交
279

C
caoying03 已提交
280 281 282 283
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

284
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
285 286 287 288 289 290
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

291
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
292 293 294 295
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
296

C
caoying03 已提交
297
Note:
Y
Yibing Liu 已提交
298

C
caoying03 已提交
299 300 301
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
302 303

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
304
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
305
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
306
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
307 308

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
309
Attr(shape) still should be set correctly to guarantee shape inference in
310
compile-time.
Y
Yibing Liu 已提交
311

Y
Yibing Liu 已提交
312 313 314 315 316 317 318 319 320 321 322 323
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

324
  void InferShape(framework::InferShapeContext *ctx) const override {
325 326 327
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
328
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
329 330
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
331
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
332
  }
333 334 335 336

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
337 338 339
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
340
  }
Y
Yibing Liu 已提交
341 342
};

Y
yuyang18 已提交
343 344 345 346 347
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
348

Y
yuyang18 已提交
349
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
366 367
        if (platform::is_gpu_place(shape_tensor->place()) ||
            platform::is_xpu_place(shape_tensor->place())) {
368 369 370 371 372 373 374
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
375 376
      }
    }
Y
yuyang18 已提交
377

378
    out->Resize(out_dims);
379
    out->mutable_data(ctx.GetPlace(), in->type());
380 381 382

#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
383 384 385 386 387 388 389 390 391 392 393 394 395 396
      void *out_ptr = out->data<void>();
      const void *in_ptr = in->data<void>();
      if ((out_ptr != nullptr) && (in_ptr != nullptr) &&
          (paddle::framework::SizeOfType(in->type()) > 0)) {
        auto &dev_ctx =
            ctx.template device_context<paddle::platform::XPUDeviceContext>();
        int r = xpu::memcpy_device(
            dev_ctx.x_context(), out_ptr, in_ptr,
            in->numel() * paddle::framework::SizeOfType(in->type()));
        PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                          platform::errors::External(
                              "XPU memcpy_device return wrong value[%d %s]", r,
                              XPUAPIErrorMsg[r]));
      }
397 398 399 400 401 402 403 404
    } else {
#endif
      framework::TensorCopy(
          *in, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), out);
#ifdef PADDLE_WITH_XPU
    }
#endif
Y
yuyang18 已提交
405 406
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
407 408 409 410 411 412 413
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
414
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
415

416
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
417 418 419
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
D
dzhwinter 已提交
420
    d_x->Resize(in_dims);
Y
yuyang18 已提交
421
  }
Y
yuyang18 已提交
422 423
};

424 425 426 427 428 429 430 431 432
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
433 434 435
    framework::TensorCopy(
        *dd_x, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dd_out);
436 437 438 439
    dd_out->Resize(out_dims);
  }
};

440 441 442 443 444 445 446 447 448 449 450 451 452
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
453
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
454 455
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
456 457 458 459 460 461 462 463
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
464 465

    ReshapeOp::InferShape(ctx);
466 467 468 469 470 471 472 473 474 475 476
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
477 478 479 480
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
481
        .SetDefault(false);
482 483 484 485 486
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
487 488 489
  }
};

H
hong 已提交
490 491
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
492
 public:
H
hong 已提交
493
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
494

495
  void Apply(GradOpPtr<T> grad_op) const override {
496
    grad_op->SetType("reshape2_grad");
H
hong 已提交
497 498 499 500
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
501 502 503
  }
};

H
hong 已提交
504 505
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
506
 public:
H
hong 已提交
507
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
508

509
  void Apply(GradOpPtr<T> grad_op) const override {
510
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
511 512 513 514
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
515 516 517
  }
};

518 519 520 521 522 523 524 525 526
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
527 528 529
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
530
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
531 532
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
533 534 535 536 537 538 539 540 541
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
542 543 544
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
545
  }
546 547 548 549 550 551 552 553 554 555

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
556 557
};

558 559 560 561 562 563 564 565 566 567
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
568 569
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
570 571 572 573 574 575 576 577
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
578 579 580
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
581 582 583 584 585 586 587 588 589 590 591 592 593
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

594 595
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
596 597
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
598 599
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
600
                                    "DOut");
D
dzhwinter 已提交
601

Y
Yibing Liu 已提交
602 603 604
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
605
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
606

H
hong 已提交
607 608 609 610
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
611
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
612
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
613
                  ops::ReshapeGradInplaceInferer);
614

615 616 617 618 619 620 621
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
622
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
623 624
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
625
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
626
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
627 628
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
629
                  ops::ReshapeGradInplaceInferer);
630
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
631 632
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
    paddle::platform::bfloat16, ops::ReshapeKernel, paddle::platform::complex64,
    ops::ReshapeKernel, paddle::platform::complex128, ops::ReshapeKernel);

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
    ops::ReshapeGradKernel, paddle::platform::complex64, ops::ReshapeGradKernel,
    paddle::platform::complex128, ops::ReshapeGradKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex64,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex128,
    ops::ReshapeDoubleGradKernel);
654

Y
yuyang18 已提交
655
#ifdef PADDLE_WITH_CUDA
656 657
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
658 659
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
660
                                ops::ReshapeKernel);
661 662 663
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
664
                                ops::ReshapeGradKernel, uint8_t,
665
                                ops::ReshapeGradKernel, plat::float16,
666

667 668 669
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
670 671
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
                                plat::complex64, ops::ReshapeKernel,
                                plat::complex128, ops::ReshapeKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex64,
    ops::ReshapeGradKernel, plat::complex128, ops::ReshapeGradKernel);

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
    ops::ReshapeDoubleGradKernel, plat::complex64, ops::ReshapeDoubleGradKernel,
    plat::complex128, ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
689
#endif
690 691 692 693 694

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
695 696 697
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
                               plat::complex64, ops::ReshapeKernel,
                               plat::complex128, ops::ReshapeKernel);
698 699 700 701
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
702
                               ops::ReshapeGradKernel, bool,
703 704
                               ops::ReshapeGradKernel, plat::complex64,
                               ops::ReshapeGradKernel, plat::complex128,
705
                               ops::ReshapeGradKernel);
706
#endif